Answer:
Distance = 3.69 × 10^9 m
The distance from the probe to Earth is 3.69 × 10^9 m
Explanation:
Distance from the probe to the Earth can be derived using the simple motion formula;
Distance = speed × time .....1
Since a radio signal uses an electromagnetic wave to transfer signal, it has the same speed as the speed of light.
Speed of radio signal = speed of light = 3.0 × 10^8 m/s
time taken to reach the earth = 12.3 seconds
Substituting the values of speed and time into equation 1;
Distance = 3.0 × 10^8 m/s × 12.3 s
Distance = 36.9 × 10^8 m
Distance = 3.69 × 10^9 m
Note: all electromagnetic radiation have the same speed which is equal to 3.0 × 10^8 m/s
Answer:
No
Explanation:
The rate at which solids expand when heated depends on the substance. Metals tend to have higher rates of expansion (per degree change in temperature) than non-metal solids, but there is variation even among metals. A table of expansion coefficients can be found here or here.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.