Answer:
v = 24 cm and inverted image
Explanation:
Given that,
The focal length of the object, f = +8 cm
Object distance, u = -12 cm
We need to find the position &nature of the image. Let v be the image distance. Using lens formula to find it :

Put all the values,

So, the image distance from the lens is 24 cm.
Magnification,

The negative sign of magnification shows that the formed image is inverted.
Answer:
I answered Number 4 (Solids and Elasticity)
Explanation:
solids and elasticity
The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

Generally, the equation for Rate of flow of Liquid is mathematically given as

$$
Where dP is pressure difference r is the radius
is the viscosity of water
L is the length of the pipe


In $30s the quantity that flows out of the tube

In conclusion, the quantity that flows out of the tube

Read more about the flows rate
brainly.com/question/27880305
#SPJ1
The statement can't be true. Objects with different masses held at the same height don't have the same gravitational potential energy.
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


