Answer:
a)32.34 N/m
b)10cm
c)1.6 Hz
Explanation:
Let 'k' represent spring constant
'm' mass of the object= 330g =>0.33kg
a) in order to find spring constant 'k', we apply Newton's second law to the equilibrium position 10cm below the release point.
ΣF=kx-mg=0
k=mg / x
k= (0.33 x 9.8)/ 0.1
k= 32.34 N/m
b) The amplitude, A, is the distance from the equilibrium (or center) point of motion to either its lowest or highest point (end points). The amplitude, therefore, is half of the total distance covered by the oscillating object.
Therefore, amplitude of the oscillation is 10cm
c)frequency of the oscillation can be determined by,
f= 1/2π 
f= 1/2π 
f= 1.57
f≈ 1.6 Hz
Therefore, the frequency of the oscillation is 1.6 Hz
Their combined momentum after they meet is 0 .
Answer:
Sound travels through solids and liquids at the same speed
Explanation:
Because sound needs a dencer object to travel fast and since both liquid and solids are closer than gas sound travles faster in them.
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
grams, pounds, kilos, etc