Answer:
<u>Resolving</u><u> </u><u>horizontally</u><u>.</u> :

therefore, for resultant:

substitute:

Was there any choice of answers so i can help or something u have to figure out
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
=3 metre per second ^2
Explanation:
Formula for acceleration is
V-U÷T
In the given information
V=16
U=4
T=4
Acceleration =16-4/4
=3 metre per second ^2
A continuous spectrum contains all the wavelengths
A discontinuous spectrum has strips of specific colors and can be used to identify the elements making it.
hope this helps