Answer:
The correct answer is option C
Explanation:
According to Heisenberg's principle "At the instant of time when the position is determined, that is, at the instant when the photon is scattered by the electron, the electron undergoes a discontinuous change in momentum. This change is the greater the smaller the wavelength of the light employed, i.e., the more exact the determination of the position. At the instant at which the position of the electron is known, its momentum therefore can be known only up to magnitudes which correspond to that discontinuous change; thus, the more precisely the position is determined, the less precisely the momentum is known".
Hence, this principle made scientists to realize that electrons could not be located in defined orbits which a contradictory of Bohr's model.
Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Any change in which the composition of material does not change that is it retains its identity but changes its state or form is known as a physical change.
The properties of metal to draw them into wires is known as ductility. When a copper is drawn into wire the only change that occurs is change in its shape and size no change will take place into its composition that is the wires are still possessing the properties of copper metal. Thus, a physical change takes place when copper is drawn into wire.
The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
Oceanic crust is the relatively thin part of the earths crust which underlies the ocean basins. it is geologically young compared with the continental crust and consists of basaltic rock overlain by sediments