Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K
Just find the energy of the <span>blueviolet light with a wavelength of 434.0 nm using the formula:
E = hc / lambda
E = energy
c= speed of light = 3 x 10^8 m/s
h = planck's constant = 6.6 x 10^{-34} m^2 kg / s
lambda = 434 nm = 434 x 10^{-9} m
Putting these values (with appropriate units) in the above formula :
we get: Energy, E = 4.5 x 10^{-19} J
E = 0.45 x 10^{-18} J
Now, the </span>minimum energy is 2.18×10^-{18} J but our energy is 0.45 x 10^{-18} J which is less.
<span>Means the electron will not be removed
</span>
1) 1.8 micrograms(least)
2) 1.8 grams
3) 1.8 kilograms(greatest)
There are:
19.8g of nuts (90x0.22=19.8)
31.5g of granola (90x0.35=31.5)
16.2g of dried fruit (90x0.18=16.2)
22.5g of chocolate chips (90x0.25=22.5)