The values for hydroxide ions, hydronium ions and pH are found in the attached picture.
Explanation:
See the attached picture.
Learn more about:
pH
brainly.com/question/1525823
#learnwithBrainly
I believe the answer is C
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
Answer:
b. colloid
Explanation:
Colloids are solutions that are going to have a solute and a solvent, but the size of the particles are bigger than in a solution that is clear. that is the reason that it looks blurred because the particles are bigger.
In the other hand, these particles of the solute are big, but not so big and heavy as in a suspension, so they are not going to precipitate in the bottom.
The movement of the particles are called Brownian movement, and they are the responsible to avoid to settle down at the bottom of the recipient.