Option 3- Avogadro's, Charles's and Boyle's
Answer: 20 mg Te-99 remains after 12 hours.
Explanation: N(t) = N(0)*(1/2)^(t/t1/2)
N(t) = (80 mg)*(0.5)^(12/6)
N(t) = 20 mg remains after 12 hours
Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
Answer:
D.phototropism
Explanation:
Phototropism is a type of tropism in which a plant or plant part responds to light. According to this question, a student wanted to investigate the effect of light on the growth of cress seedlings. The student used three different pots for the experiment.
Pot 1 was placed with light from above. Pot 2 was placed in a cupboard with no light. Pot 3 was placed in a window with light from one direction only. However, the image attached to this question shows that the plants in the different pots face different directions in response to light, which depicts phototropism
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.