1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
9

When an electron in a valence band is raised to a conduction band by sufficient light energy, semiconductors start conducting __

______.
Engineering
1 answer:
garri49 [273]3 years ago
4 0

Answer:

This band gap also allows semiconductors to convert light into electricity in photovoltaic cells and to emit light as LEDs when made into certain types of diodes. Both these processes rely on the energy absorbed or released by electrons moving between the conduction and valence bands.

Explanation:

On the internet

You might be interested in
In plumbing what is a video snake used for
aleksley [76]

Answer:

How to stop toilets  

Explanation:

I think

Hope this helps

7 0
3 years ago
Read 2 more answers
The Eads Bridge, which crosses the Mississippi River near St Louis, Missouri, was one of the first all steel bridges built in th
MrMuchimi

Answer: At 520 feet between the piers, the center arch of Eads Bridge was the longest rigid span ever built at the time of its construction (only a few suspension bridges had longer spans).

Explanation:

5 0
3 years ago
The tropics receive more heat from the sun than is radiated away from the tropics, and polar regions radiate more than they rece
IRINA_888 [86]

Answer:

It is a well known fact that the earth rotates around the sun in an inclined axis which is approximately 23 degree. The inclined nature of earth axis causes variation in the solar heat received at any place on the earth surface. The hemisphere facing the sun due to this axial tilt, gets higher sun energy as compared to the opposite side. The hemisphere which faces the sun will experience summer whereas the hemisphere away from sun will experience winter.

In each of the hemisphere the polar areas will receive higher radiation and longer daytime during the summer season. However it has been observed that there is difference in radiation received at different areas of earth surface and radiated. The tropical areas have lower reflectance and thus a large part of incoming solar radiation have been absorbed along the tropics. The poles though have longer daytime during summer and hence greater solar radiation but due to high reflectance radiate more energy. Thus the tropical areas have surplus energy as compared to deficit energy areas of poles. This difference in energy creates a heat imbalance.

This net heat difference between poles and equator gives rise to a global circulation system leading to flow of heat from the net energy excess areas to deficit areas. This circulation takes place through atmosphere as well as oceans and different process of climate viz. evaporation, transpiration, rainfall, wind, convection, oceanic circulations etc work as tools of this system

4 0
3 years ago
Define waves as it applies to electromagnetic fields
julsineya [31]

Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.

5 0
2 years ago
A 15-ft beam weighing 570 lb is lowered by means of two cables unwinding from overhead cranes. As the beam approaches the ground
7nadin3 [17]

Answer:

I. Tension (cable A) ≈ 6939 lbf

II. Tension (cable B) ≈ 17199 lbf

Explanation:

Let's begin by listing out the data that we were given:

mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,

g = 32.17405 ft/s²

The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.

Mathematically represented thus:

T = mg + ma

where:

T = tension, m = mass, g = gravitational force,

a = acceleration

I. For Cable A, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-20)]

T = 18339.2085 - 11400 = 6939.2085

T ≈ 6939 lbf

II. For Cable B, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-2)]

T = 18339.2085 - 1140 = 17199.2085

T ≈ 17199 lbf

4 0
4 years ago
Other questions:
  • The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C. Determine the gage pressure of the gas if
    12·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • Historically, the introduction of technology has caused profound changes in the labor market and, temporarily at least, displace
    6·1 answer
  • In order to break even, your minimum selling price must be __________ your variable costs.
    10·1 answer
  • The rolling process is governed by the frictional force between the rollers and the workpiece. The frictional force at the entra
    5·1 answer
  • A 25 lb sacrificial Mg anode is attached to the steel hull of a container ship. If the anode completely corrodes within 3 months
    10·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • A___ remote control can be an advantage to an
    14·2 answers
  • The image shows the relative positions of Earth and the Sun for each of the four seasons. Earth travels in an elliptical orbit a
    11·2 answers
  • Which pipe for water is best for construction?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!