The main objective of phasing out an INDUCTION MOTOR is to identify the ends of the stator coils.
<h3>What is an induction motor?</h3>
An induction motor is a device based on alternate electricity (AC) which is composed of three different stator coils.
An induction motor is a device also known as an asynchronous motor due to its irregular velocity.
In conclusion, the objective of phasing out an INDUCTION MOTOR is to identify the ends of the stator coils.
Learn more on induction motors here:
brainly.com/question/15721280
#SPJ1
Answer:
to be or not to be
Explanation:
Vivi is a drummer for a band. She burns 756756756 calories while drumming for 333 hours. She burns the same number of calories each hour.
Answer:
(a) T = W/2(1-tanθ) (b) 39.81°
Explanation:
(a) The equation for tension (T) can be derived by considering the summation of moment in the clockwise direction. Thus:
Summation of moment in clockwise direction is equivalent to zero. Therefore,
T*l*(sinθ) + W*(l/2)*cosθ - T*l*cosθ = 0
T*l*(cosθ - sinθ) = W*(l/2)*cosθ
T = W*cosθ/2(cosθ - sinθ)
Dividing both the numerator and denominator by cosθ, we have:
T = [W*cosθ/cosθ]/2[(cosθ - sinθ)/cosθ] = W/2(1-tanθ)
(b) If T = 3W, then:
3W = W/2(1-tanθ),
Further simplification and rearrangement lead to:
1 - tanθ = 1/6
tanθ = 1 - (1/6) = 5/6
θ = tan^(-1) 5/6 = 39.81°
Answer: 24 pA
Explanation:
As pure silicon is a semiconductor, the resistivity value is strongly dependent of temperature, as the main responsible for conductivity, the number of charge carriers (both electrons and holes) does.
Based on these considerations, we found that at room temperature, pure silicon resistivity can be approximated as 2.1. 10⁵ Ω cm.
The resistance R of a given resistor, is expressed by the following formula:
R = ρ L / A
Replacing by the values for resistivity, L and A, we have
R = 2.1. 10⁵ Ω cm. (10⁴ μm/cm). 50 μm/ 0.5 μm2
R = 2.1. 10¹¹ Ω
Assuming that we can apply Ohm´s Law, the current that would pass through this resistor for an applied voltage of 5 V, is as follows:
I = V/R = 5 V / 2.1.10¹¹ Ω = 2.38. 10⁻¹¹ A= 24 pA