1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
3 years ago
13

Describe a gear train that would transform a counterclockwise input rotation to a counterclockwise output rotation where the dri

ven gear rotates three times for every rotation of the driver gear.
Engineering
1 answer:
masya89 [10]3 years ago
3 0

Answer:

For a gear train that would train that transform a counterclockwise input into a counterclockwise output such that the gear that is driven rotates three times when the driver rotates once, we have;

1) The number of gears in the gear train = 3 gears with an arrangement such that there is a gear in between the input and the output gear that rotates clockwise for the output gear to rotate counter clockwise

2) The speed ratio of the driven gear to the driver gear = 3

Therefore, we have;

Speed \ Ratio =\dfrac{Speed \ of \ Driven \ Gear}{Speed \ of \ Driver \ Gear} = \dfrac{The \ Number \ of \ Teeth \ of \ Driver \ Gear}{The \ Number \ of \ Teeth \ of \ Driven \ Gear}

Therefore, for a speed ratio of 3, the number of teeth of the driver gear, driving the output gear, must be 3 times, the number of teeth of the driven gear

Explanation:

You might be interested in
Question 8(Multiple Choice Worth 2 points)
8090 [49]

Answer:

4 number answer is correct.

8 0
2 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
At the instant under consideration, the hydraulic cylinder AB has a length L = 0.75 m, and this length is momentarily increasing
Inessa [10]

Answer:

vB = - 0.176 m/s   (↓-)

Explanation:

Given

(AB) = 0.75 m

(AB)' = 0.2 m/s

vA = 0.6 m/s

θ = 35°

vB = ?

We use the formulas

Sin θ = Sin 35° = (OA)/(AB) ⇒  (OA) = Sin 35°*(AB)

⇒   (OA) = Sin 35°*(0.75 m) = 0.43 m

Cos θ = Cos 35° = (OB)/(AB) ⇒  (OB) = Cos 35°*(AB)

⇒   (OB) = Cos 35°*(0.75 m) = 0.614 m

We apply Pythagoras' theorem as follows

(AB)² = (OA)² + (OB)²

We derive the equation

2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB

⇒  (AB)*(AB)' = (OA)*vA + (OB)*vB

⇒  vB = ((AB)*(AB)' - (OA)*vA) / (OB)

then we have

⇒  vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)

⇒  vB = - 0.176 m/s   (↓-)

The pic can show the question.

7 0
3 years ago
Read 2 more answers
As the junior engineer at the Mesabi Range Hydraulic Engineering Company located in Ely, Minnesota, you have been tasked with de
katen-ka-za [31]

yes it will

Explanation:

5 0
3 years ago
A circular hoop sits in a stream of water, oriented perpendicular to the current. If the area of the hoop is doubled, the flux (
natka813 [3]

Answer:

The flux (volume of water per unit time) through the hoop will also double.

Explanation:

The flux = volume of water per unit time = flow rate of water through the hoop.

The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.

This means that

Flow rate = AV

where A is the area of the hoop

V is the velocity of the water through the hoop

This flow rate = volume of water per unit time = Δv/Δt =Q

From all the above statements, we can say

Q = AV

From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2

3 0
3 years ago
Other questions:
  • In a particular application involving airflow over a heated surface, the boundary layer temperature distribution may be approxim
    6·1 answer
  • Plot the absorbance, A, versus the FeSCN2 concentration of the standard solutions (the values from your Pre-lab assignment). Fro
    7·1 answer
  • WILL BRAINLIEST IF CORRECT!!!!!<br><br> Some one help ASAP.
    8·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
    7·1 answer
  • Evaporation in Double-Effect Reverse-Feed Evaporators. A feed containing 2 wt % dissolved organic solids in water is fed to a do
    14·1 answer
  • 25 points and brainliest is it A, B, C, D
    5·2 answers
  • What are the partial products of 2.3 x 2.6
    15·1 answer
  • Seperate real and imaginary parts tan(2x+i3y)
    15·1 answer
  • 9. A piece of Cherry wood is 5/4 x 4" X 4'<br> What is the length in inches?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!