To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
Answer:
The initial speed of the pelican is 8.81 m/s.
Explanation:
Given;
height of the pelican, h = 5.0 m
horizontal distance, X = 8.9 m
The time of flight is given by;

The initial horizontal speed of the pelican is given by;
X = vₓt
vₓ = X / t
vₓ = 8.9 / 1.01
vₓ = 8.81 m/s
Therefore, the initial speed of the pelican is 8.81 m/s.
The potential energy of the skateboarder at the top of the ramp is
489.1 J.
<h3>Is kinetic energy always equal to potential energy?</h3>
The amount of kinetic energy change and the amount of potential energy change are equal in all physical processes that take place in closed systems. When the kinetic energy rises, the potential energy falls, and vice versa.
Potential energy is the stored energy in any object or system as a result of its position or component arrangement. However, external factors like air or height have no effect on it. The energy of a moving object or system is referred to as kinetic energy.
Potential energy = kinetic energy
Potential energy = 1/2mv²
Potential energy = 1/2 × 67×7.3
Potential energy = 489.1 J.
To know more about kinetic energy visit:
brainly.com/question/26472013
#SPJ1
This can be seen as a trick question because heat engines can typically never be 100 percent efficient. This is due to the presence of inefficiencies such as friction and heat loss to the environment. Even the best heat engines can only go up to around 50% efficiency.