A lighted candle produces heat however not as much heat as a heater or the sun would.
Answer:
= 7.02 ° C
Explanation:
The liquid water gives heat to melt the ice (Q₁) maintaining the temperature of 0 ° C and then the two waters are equilibrated to a final temperature.
Let's start by calculating the heat needed to melt the ice
Q₁ = m L
Q₁ = 0.090 3.33 10⁵
Q₁ = 2997 10⁴ J
This is the heat needed to melt all the ice
Now let's calculate at what temperature the water reaches when it releases this heat
Q = M
(T₀ -
)
Q₁ = Q
= T₀ - Q₁ / M 
= 20.0 - 2997 104 / (0.600 4186)
= 20.0 - 11.93
= 8.07 ° C
This is the temperature of the water when all the ice is melted
Now the two bodies of water exchange heat until they reach an equilibrium temperature
Temperatures are
Water of greater mass T₀₂ = 8.07ºC
Melted ice T₀₁ = 0ºC
M
(T₀₂ -
) = m
(
- T₀₁)
M T₀₂ + m T₀₁ = m
+ M 
= (M T₀₂ + 0) / (m + M)
= M / (m + M) T₀₂
let's calculate
= 0.600 / (0.600 + 0.090) 8.07
= 7.02 ° C
The mantle. It is also the largest earth layer, making up about 84% of the earth.
Answer:
a) the three longest wavelengths = 4.8m, 2.4m, 1.6m
b) what is the frequency of the third-longest wavelength = 75Hz
Explanation:
The steps and appropriate formula and substitution is as shown in the attached file.