1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
10

A. What are the three longest wavelengths for standing waves on a 240-cm-long string that is fixed at both ends?

Physics
1 answer:
vovangra [49]3 years ago
5 0

Answer:

a) the three longest wavelengths = 4.8m, 2.4m, 1.6m

b) what is the frequency of the third-longest wavelength = 75Hz

Explanation:

The steps and appropriate formula and substitution is as shown in the attached file.

You might be interested in
A vector is parallel to the y axis, what is it x component?<br>​
slavikrds [6]

Answer:

Explanation:

A vector is parallel to the y axis .

Let its magnitude be A . So the vector can be represented as A j .

where i and j are unit vectors in x and y axis direction .

The x component of A j will be dot product of A j with i

The x component of A j = A j . i

= A x 0      [  Since j . i = 0 ]

= 0

4 0
2 years ago
Thermopane window is constructed, using two layers of glass 4.0 mm thick, separated by an air space of 5.0 mm.
Bond [772]

To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

\frac{Q}{t} = \frac{kA\Delta T}{d}

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat, \Delta T, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.

The change made between glass and air would be determined by:

(\frac{Q}{t})_{glass} = (\frac{Q}{t})_{air}

k_{glass}(\frac{A}{L})_{glass} \Delta T_{glass} = k_{air}(A/L)_{air} \Delta T_{air}

\Delta T_{air} = (\frac{k_{glass}}{k_{air}})(\frac{L_{air}}{L_{glass}}) \Delta T_{glass}

\Delta T_{air} = (\frac{0.84}{0.0234})(\frac{5}{4}) \Delta T_{glass}

\Delta T_{air} = 44.9 \Delta T_{glass}

There are two layers of Glass and one layer of Air so the total temperature would be given as,

\Delta T = \Delta T_{glass} +\Delta T_{air} +\Delta T_{glass}

\Delta T = 2\Delta T_{glass} +\Delta T_{air}

20\°C = 46.9\Delta T_{glass}

\Delta T_{glass} = 0.426\°C

Finally the rate of heat flow through this windows is given as,

\Delta {Q}{t} = k_{glass}\frac{A}{L_{glass}}\Delta T_{glass}

\Delta {Q}{t} = 0.84*24*10 -3*0.426

\Delta {Q}{t} = 179W

Therefore the correct answer is D. 180W.

3 0
2 years ago
A mass m at the end of a spring oscillates with a frequency of 0.89 hz. when an additional 603 g mass is added to m, the frequen
MrMuchimi

The solution for this problem:

Given:

f1 = 0.89 Hz

f2 = 0.63 Hz

Δm = m2 - m1 = 0.603 kg 


The frequency of mass-spring oscillation is: 
f = (1/2π)√(k/m) 
k = m(2πf)² 

Then we know that k is constant for both trials, we have: 
k = k 


m1(2πf1)² = m2(2πf2)² 

m1 = m2(f2/f1)² 


m1 = (m1+Δm)(f2/f1)² 


m1 = Δm/((f1/f2)²-1)

 m 1 = 0.603/ (0.89/0.63)^2 – 1

= 0.609 kg or 0.61kg or 610 g

5 0
3 years ago
A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75
8_murik_8 [283]

Complete Question

A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm . The power is off for 40.0 s , and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 210 complete revolutions. At what rate is the flywheel spinning when the power comes back on(in rpm)? How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?

Answer:

\theta=274rev

Explanation:

From the question we are told that:

Angular velocity \omega=510rpm

Mass m=40.kg

Diameter d 75=>0.75m

Off Time t=40.0s

Oscillation at Power off N=210

Generally the equation for Angular displacement is mathematically given by

 \theta_{\infty}=\frac{w+w_0}{t}t

 w=\frac{2*\theta_{\infty}}{t}-w_0

 w=\frac{28210}{40*(\frac{1}{60})}-510

 w=120rpm

Generally the equation for Time to come to rest is mathematically given by

 t=(\frac{\omega_0}{\omega_0-\omega})t

 t=(\frac{510}{510-120rpm})(40.0)(\frac{1}{60})

 t=0.87min

Therefore Angular displacement is

 \theta =(\frac{120+510}{2})0.87

 \theta=274rev

6 0
3 years ago
An 11.0 -W energy-efficient fluorescent lightbulb is designed to produce the same illumination as a conventional 40.0-W incandes
yarga [219]

The amount or cost that the user of the energy-efficient bulb save during 100h of use will be $0.319.

<h3>How to calculate the cost?</h3>

For the 11.0W bulb, it should be noted that the value will be:

= 11.0 × 100 × (1/1000) × 0.110

= $0.121

The 40W bulb will be:

= 40 × 100 × (1/1000) × 0.110

= $0.44

Therefore, the amount that will be saved will be:

= $0.44 - $0.121

= $0.319

Learn more about cost on:

brainly.com/question/25109150

#SPJ4

6 0
2 years ago
Other questions:
  • Find the angle between forces of 41 pounds and 68 pounds given a magnitude of 87 pounds for the resultant force. (Hint: Write fo
    6·1 answer
  • A coefficient in a chemical formula shows the number of electrons?<br><br> True<br> False
    15·2 answers
  • A car travels 2 hours at 45 miles/ hour. How far did it go?
    13·1 answer
  • An important news announcement is transmitted by radio waves to people sitting next to their radios 42 km from the station and b
    14·1 answer
  • When preparing for a rocket launch, the mission control center uses the phrase "T minus" before liftoff. ...T minus 3, T minus 2
    11·1 answer
  • A lens uses what process to deflect light rays passing through it? a. reflection b. refraction c. absorption d. transparency
    8·2 answers
  • A man claims that he can hold onto a 16.0-kg child in a head-on collision as long as he has his seat belt on. Consider this man
    10·1 answer
  • Has an atomic number of 1
    11·2 answers
  • Consider a stone and a football both at rest and having the same mass. why is it painful to kick the stone than to kick the foot
    8·1 answer
  • A person with a gravitational force of 750 N is sitting in the centre of a hammock which is strung between two trees. The ropes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!