Answer:
As you haven't explained what measurements you took before solving this problem, I will explain the general procedure to evaluate the efficiency of a kettle. I hope it helps you. I´ll send an attachement file with the full answer, since I couldn't write it here.
I assume that the material that is going to be heated in the kettle is water.
1- You have to boil water in it and take the time it takes to its boiling point (in seconds).
2- You have to evaluate the amount of energy the water absorbed Q with the efficiency formula which I explain in the attachement file.
3- Divide Q by the time it took to bring the water to boiling so you can have the power it consumed.
4- You divide the last value you obtained by the Kettles's power rating.
5- Multiply the last value by 100 to obtain a percentage value of efficiency.
Explanation:
Efficiency is the ration of a machine's useful work, in this case how much energy the water absorbed to get to its boiling point divided by the time it took to get to this point, and the total energy expended, in this case the kettles's power rating.
I don't know what model you're referring to so I can't answer the question. However, upon researching, I found a similar problem. I posted it as an attached picture. Looking at the model, the amount of grams a herbivore eat each day corresponds to the arrow pointing inwards. Since the label says 4.0 g,
<em>the answer is 4 g per day</em>.
A phospholipid structure is shown in the picture attached. It has three parts: the hydrophobic tail, the hydrophilic head and the phosphate group in the center. Thus, the function of the phosphate group is to link the hydrophobic and hydrophilic parts of a phospholipid. Specifically, the phosphate group is part of the hydrophilic head. So, it is used to connect the phospholipids to polar compounds.
1.) MgO + Fe --> FeO + Mg
2.) H + I --> HI
3.) Na + I --> NaI
4.) NaO + H2O --> NaOH + H