1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
13

a toy car is wound up and released on the floor. it accelerates at a rate of 0.4 m/s/s . the mass of the care is 3kg. what is th

e force that the cars wheels exert on the floor.
Physics
1 answer:
EastWind [94]3 years ago
8 0

Answer:

1.2N

Explanation:

f=m×a

m=3kg

a=.4m/s/s

3×.4=1.2

kg×m/s/s = N

You might be interested in
An aluminum-alloy rod has a length of 10.0 cm at 20°C and a length of 10.015 cm at the boiling point of water (1000C). (a) What
nikitadnepr [17]

Answer:

a.  9.99625 cm b. 68 °C

Explanation:

(a) What is the length of the rod at the freezing point of water (0 0C)?

Before we find the length of the rod, we need to find the coefficient of linear expansion, α = (L - L₀)/[L₀(T - T₀)] where L₀ = length of rod at temperature T₀ = 10.0 cm, T₀ = 20 °C, L = length of rod at temperature T = 10.015 cm and T = 100 °C

Substituting the values of the variables into the equation, we have

α = (L - L₀)/[L₀(T - T₀)]

α = (10.015 cm - 10.0 cm)/[10.0 cm(100 °C - 20 °C)]

α = 0.015 cm/[10.0 cm × 80 °C]

α = 0.015 cm/[800.0 cm °C]

α = 0.00001875 /°C

We now find the length L₁ at T₁ = 0 °C from

L₁ = L₀(1 + α(T₁ - T₀))

So, substituting the values of the variables into the equation, we have

L₁ = L₀(1 + α(T₁ - T₀))

L₁ = 10.0 cm[1 +  0.00001875 /°C(0° C - 20 °C)]

L₁ = 10.0 cm[1 +  0.00001875 /°C × -20° C]

L₁ = 10.0 cm[1 - 0.000375]

L₁ = 10.0 cm[0.999625]

L₁ = 9.99625 cm

(b) What is the temperature if the length of the rod is 10.009 cm?

With length L₃ = 10.009 cm at temperature T₃, using

L₃ = L₀(1 + α(T₃ - T₀))

making T₃ subject of the formula, we have

L₃/L₀ = 1 + α(T₃ - T₀)

L₃/L₀ - 1 = α(T₃ - T₀)

T₃ - T₀ = (L₃/L₀ - 1)/α

T₃ = T₀ + (L₃/L₀ - 1)/α

substituting the values of the variables into the equation, we have

T₃ = 20 °C + (10.009 cm/10.0 cm - 1)/0.00001875 /°C

T₃ = 20 °C + (1.0009 - 1)/0.00001875 /°C

T₃ = 20 °C + 0.0009/0.00001875 /°C

T₃ = 20 °C + 48 °C

T₃ = 68 °C

8 0
3 years ago
As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
Andreyy89

Answer:

Explanation:

When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.

When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other  .So both the shells lose their charges .The positive half shell also loses all its charges

When we separate the half shells , there will be no deflection  in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.

4 0
3 years ago
Read 2 more answers
What causes convection currents, and what do they do?
frez [133]

Answer:

Convection currents are the result of different heating. Lighter material (warm) rises while heavier (cold) material sinks. This movement of the materials is what causes convection currents! (BTW, it happens in water, in the atmosphere, and in the mantle of Earth!

Explanation:

I hope this helps a little! :)

6 0
3 years ago
An inductor has inductance of 0.260 H and carries a current that is decreasing at a uniform rate of 18.0 mA/s.
nignag [31]

Answer:

The self-induced emf in this inductor is 4.68 mV.

Explanation:

The emf in the inductor is given by:

\epsilon = -L\frac{dI}{dt}

Where:

dI/dt: is the decreasing current's rate change = -18.0 mA/s (the minus sign is because the current is decreasing)

L: is the inductance = 0.260 H

So, the emf is:

\epsilon = -L\frac{dI}{dt} = -0.260 H*(-18.0 \cdot 10^{-3} A/s) = 4.68 \cdot 10^{-3} V

Therefore, the self-induced emf in this inductor is 4.68 mV.  

I hope it helps you!

6 0
3 years ago
Identify each picture as either an inelastic collision or elastic collision
Ivan

Answer:

<u>Inelastic collision:</u>

A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.

<u>Characteristics of an inelastic collision:</u>

  • <em>the momentum of the system is conserved</em>
  • <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>

<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>

<u>Elastic </u><u>collision</u><u>:</u>

A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.

<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>

  • <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
  • <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>

In everyday life, no collision is perfectly elastic.

__________________

ANSWER:

<u>Given examples:</u>

  • Two cars colliding with each other form an example of inelastic collision.

<u>Reason:</u>

<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>

  • A ball bouncing after colliding with a surface is an example of elastic collision

<u>Reason:</u>

<em>(a very less amount of kinetic energy is lost)</em>

7 0
2 years ago
Other questions:
  • How do i do about how to do the doing of how about how the logic of the person below me is bad but actually isnt bad because the
    10·2 answers
  • Determine whether the following statements are true or false and give an explanation or counter example. a. If the acceleration
    15·1 answer
  • A 51.0-kg woman wearing high-heeled shoes is invited into a home in which the kitchen has vinyl floor covering. The heel on each
    15·1 answer
  • Newton's law of gravitation says that the magnitude f of the force exerted by a body of mass m on a body of mass m is f = gmm r2
    14·1 answer
  • A voltmeter with resistance rv is connected across the terminals of a battery of emf e and internal resistance r. Find the poten
    10·1 answer
  • A ball is dropped from the top of an eleven-story building to a balcony on the ninth floor. In which case is the change in the p
    6·1 answer
  • Help me with this question plss!! :) ​
    9·1 answer
  • Problem 6. A negatively charged particle is placed in a uniform electric field directed
    10·1 answer
  • Start from 0 m/s and accelerate at 2m/s? Calculate the speed in m/s after acceleration for 5 seconds.
    11·1 answer
  • The force of repulsion that two like charges exert on each other 5N. what will be if the distance between the charge is decrease
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!