Answer:
that technician A is right
Explanation:
The test lights are generally small bulbs that are turned on by the voltage and current flowing through the circuit in analog circuits, these two values are high and can light the bulb. In digital circuits the current is very small in the order of milliamps, so there is not enough power to turn on these lights.
From the above it is seen that technician A is right
Resistance = (voltage) / (current)
For this piece of wire . . .
Resistance = (61 volts) / (6 Amperes)
Resistance = (61/6) (V/A)
<em>Resistance = (10 and 1/6) ohms</em>
Since you know the voltage and current, the length doesn't matter.
<h2>
Answer: destroy all information about its speed or momentum</h2>
The Heisenberg uncertainty principle postulates that the fact that <u>each particle has a wave associated with it</u>, imposes restrictions on the ability to determine its <u>position</u> and <u>speed</u> at the same time.
In other words:
<h2>It is impossible to measure <u>simultaneously </u>(according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle. </h2>
So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity.
It should be noted that this uncertainty does not derive from the measurement instruments, but from the measurement itself. Because, even with the most precise devices, the uncertainty in the measurement continues to exist.
Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Answer:
a) k = 891.82 N/m
b) e = 0.0143 m = 1.43 cm
c) W = 5.02 J
Explanation:
Step 1: Data given
Mass = 2.60 kg
the spring stretches 2.86 cm = 0.0286
Step 2: What is the force constant of the spring?
Force constant, k = force applied / extension produced
k = (2.60kg * 9.81N/kg) / 0.0326 m
k = 891.82 N/m
b) If the 2.60-kg object is removed, how far will the spring stretch if a 1.30-kg block is hung on it
Extension = F/k = (1.30 kg * 9.81) / 891.82 = 0.0143 m = 1.43 cm
Half the mass means half the extension
c) How much work must an external agent do to stretch the same spring 7.50 cm from its unstretched position?
W = average force used * distance
W = 1/2 * k*e * e = 1/2 k*e²
W = 1/2 * 891.82 * (0.075)² = W = 5.02 J
I think its Mercury because it's the closest to the sun.