Answer:
B) 2I
Explanation:
The equation that relates voltage, current and resistance is V=RI.
The equation for the resistance of a material in terms of its resistivity, length and cross-sectional area is 
In this case, the length is divided by 2 while keeping its resistivity (since it's the same material) and area, which means the resistance gets divided by 2. Then, looking at the equation I=V/R and keeping V constant, one deduces that since the resistance now is half than before then current now must be twice as before.
This is all intuitive in fact, cuting a homogeneous resistor in half and leaving the rest of the variables constant makes twice as easy for the electrons to cross the conductor, thus twice the current (one has to know that all the variables involved behave linearly, as the equations show).
The amount of space an objective takes up measures by volume.
<u>Explanation:</u>
Volume is a proportion of the measure of space, unfilled column that a substance or an item takes up. The essential SI unit to volume denotes in the (cubic meter), yet volumes might be estimated in cubic centimetres, and fluids might be estimated in liters (L) or milli-liters (mL). How the volume of matter is estimated relies upon its state. The fluid's volume is estimated with an estimating holder, for example, an estimating cup or graduated chamber.
The gas volume relies upon the volume of its holder: gases able to occupy anything that space is accessible to them. The occupied space of a routinely molded strong can be determined from its measurements. For instance, the rectangle’s volume strong is the result of its width, length, and stature. The volume of a sporadically molded strong can be estimated by the uprooting technique.
Explanation:
1. draught
2. Parallax error
3. angle if displacement
4. air resistance or any form of obstruction
The heat lost by the water will be equivalent to the energy gained by the alcohol. Thus:
maCaΔT = -mwCwΔT
400 x 2.64 x (T - 10) = 400 x 4.186 x (88 - T)
T = 57.8 °C