Answer:
Planets that are farther from the sun than the earth (all but Mercury and Venus) will exhibit retrograde motion.
If the position of the planet is observed relative to the background stars, the planet will appear to move backward relative to the stars when the earth is moving in an Eastward direction faster than the planet, and the planet appears to move backwards relative to the stars
(The planet will be on the side of the earth that is opposite that of the sun)
Answer:
Please refer to the figure.
Explanation:
The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.
So,

This enclosed current is now to be used in Ampere’s Law.

Here,
represents the circular path of radius r. So we can replace the integral with the circumference of the path,
.
As a result, the magnetic field is

Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Answer:
1088 m
Explanation:
3.00 seconds times by 340 =1020+68=1088