1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
9

D. 'g' vanishes at centre of

Physics
1 answer:
guapka [62]3 years ago
6 0

Answer:

a. 0.8 cm

Explanation:

The distance of the object from the lens, u = 1 cm

The magnification of the lens, m = 5

The focus of a lens formula is given as follows;

f = \dfrac{1}{\dfrac{1}{v} + \dfrac{1}{v}  }

The magnification of the lens, m = -v/u

Where;

v = The distance of the image from the lens

Therefore, we have;

v = m × u

∴ v = 5 × 1 cm = 5 cm (on the other side of the lens)

From which we get;

f = \dfrac{1}{\dfrac{1}{1} + \dfrac{1}{5}  } = \dfrac{5}{6}  \approx 0.8

The focal length ≈ 0.8 cm

You might be interested in
Two stones are launched from the top of a tall building. One stoneis thrown in a direction 30.0^\circ above the horizontal with
Butoxors [25]

Answer:

Part A)

t(1) > t(2), the stone thrown 30 above the horizontal spends more time in the air.

Part B)

x(f1) > x(f2), the first stone will land farther away from the building.

Explanation:

<u>Part A)</u>

Let's use the parabolic motion equation to solve it. Let's define the variables:

  • y(i) is the initial height, it is a constant.
  • y(f) is the final height, in our case is 0
  • v(i) is the initial velocity (v(i)=16 m/s)
  • θ1 is the first angle, 30°
  • θ2 is the first angle, -30°

For the first stone

y_{f1}=y_{i1}+v*sin(\theta_{1})t_{1}-0.5gt_{1}^{2}              

0=y_{i1}+16*sin(30)t_{1}-0.5*9.81*t_{1}^{2}

0=y_{i1}+8t_{1}-4.905*t_{1}^{2} (1)  

For the second stone  

0=y_{i2}+16*sin(-30)t_{2}-4.905t_{2}^{2}    

0=y_{i2}-8t_{2}-4.905t_{2}^{2} (2)            

 

If we solve the equation (1) we will have:

t_{1}=\frac{-8\pm \sqrt{64+19.62*y_{i}}}{-9.81}  

We can do the same procedure for the equation (2)

t_{1}=\frac{8\pm \sqrt{64+19.62*y_{i}}}{-9.81}

We can analyze each solution to see which one spends more time in the air.

It is easy to see that the value inside the square root of each equation is always greater than 8, assuming that the height of the building is > 0. Now, to get positive values of t(1) and t(2) we need to take the negative option of the square root.

Therefore, t(1) > t(2), it means that the stone thrown 30 above the horizontal spends more time in the air.

<u>Part B)</u>

We can use the equation of the horizontal position here.

<u>First stone</u>

x_{f1}=x_{i1}+vcos(30)t_{1}

x_{f1}=0+13.86*t_{1}

x_{f1}=13.86*t_{1}

<u>Second stone</u>

x_{2}=x_{i2}+vcos(-30)t_{2}

x_{1}=0+13.86*t_{1}

x_{1}=13.86*t_{2}

Knowing that t(1) > t(2) then x(f1) > x(f2)

Therefore, the first stone will land farther away from the building.

They land at different points at different times.

I hope it helps you!

3 0
3 years ago
Higher mass protostars enter the main sequence: at the same rate, but at a higher luminosity and temperature. slower and at a lo
Morgarella [4.7K]

Answer:

<em>faster and at a higher luminosity and temperature.</em>

Explanation:

A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.

A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.

Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.

That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>

8 0
3 years ago
If a resource is non renewable, it ____
Karolina [17]

it cannot be reuse and replaced for long period of time.hope it helps u

4 0
3 years ago
Elliot jumps up and down on a pogo stick. He weighs 600.N, and his pogo stick has a spring with spring constant 1100N/m. What is
tia_tia [17]

From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately

The given weight of Elliot is 600 N

From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.

P.E = mgh

where mg = Weight = 600

To find the height Elliot will reach, substitute all necessary parameters into the equation above.

250 = 600h

Make h the subject of the formula

h = 250/600

h = 0.4167 meters

Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately

Learn more about energy here: brainly.com/question/24116470

4 0
3 years ago
Changes of state
Mrrafil [7]

Answer:

Option A

Explanation:

At segment T-U, the substance changes from a liquid to a gas and does not change temperature.

The reason is because latent heat of vaporisation allows for the absorption of heat in the change of state and temperature remains constant until it has fully changed state.

4 0
2 years ago
Read 2 more answers
Other questions:
  • Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
    6·1 answer
  • When demand for electric power is high, power company sometimes reduced the voltage, thereby producing a "brown-out." What is be
    7·1 answer
  • Does air play a role in the propagation of the human voice from one end of a lecture hall to the other
    15·1 answer
  • A piece of paper looks white in both the noonday sun and under moonlight, even though there is less light being reflected off th
    10·1 answer
  • How is temperature related to kinetic energy
    14·1 answer
  • Please help!
    15·1 answer
  • The photons of different light waves:
    9·1 answer
  • Which of the following are vector quantities? Select all that apply.
    6·1 answer
  • A physics student has a battery and three equal resistors. If she uses all of the
    8·2 answers
  • The international space station (ISS) orbits the earth with a velocity 7.6 km/s. How much energy is required to lift a payload o
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!