A) 350 J
- The initial internal energy of the cup is
- The final internal energy of the cup is

According to the first law of thermodynamics:

where
Q is the heat absorbed by the system
W is the work done on the system
The work done on the system in this case is 0, so we can rewrite the equation as

And so we find the heat transferred

B) IN the cup
Explanation:
in this situation, we see that the internal energy of the cup increases. The internal energy of an object/substance is proportional to its temperature, so it is a measure of the average kinetic energy of the molecules of the object/substance. Therefore, in this case, the temperature (and the energy of the molecules of the substance) has increased: this means that heat has been transferred INTO the system from the environment (the heat came from the sun).
r(t) models the water flow rate, so the total amount of water that has flowed out of the tank can be calculated by integrating r(t) with respect to time t on the interval t = [0, 35]min
∫r(t)dt, t = [0, 35]
= ∫(300-6t)dt, t = [0, 35]
= 300t-3t², t = [0, 35]
= 300(35) - 3(35)² - 300(0) + 3(0)²
= 6825 liters
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!
The correct answer would be C. it moves at a constant speed. The troposphere(the layer our weather is in) is not nearly high enough for gravity to be different at different altitudes.
The answer is a
the equation needs to be balanced. There are fewer oxygen atoms in the equation than hydrogen or a carbon