Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
Answer
given,
mass of copper rod = 1 kg
horizontal rails = 1 m
Current (I) = 50 A
coefficient of static friction = 0.6
magnetic force acting on a current carrying wire is
F = B i L
Rod is not necessarily vertical


the normal reaction N = mg-F y
static friction f = μ_s (mg-F y )
horizontal acceleration is zero


B_w = B sinθ
B_d = B cosθ
iLB cosθ= μ_s (mg- iLB sinθ)





B = 0.1 T
For balancing the lever, force on both the sides shall be equal. so,
Force on 3 m end = m × a = 3 × 98.1 = 294.3
Now, on 6 m end, it would be: = 294.3/6 = 49.05
After rounding-off to the nearest hundredth value, it would be: 49 N
Finally, Option A would be your correct answer.
Hope this helps!