- The answer is shorter wavelength and equal speed.
That is, compared to ultraviolet light, an electromagnetic wave that has a higher frequency will also have shorter wavelength and equal speed.
This can be seen by the reaction given below:

h= Planck's constant
c=speed of the light
=frquency
=wavelength
So, higher is the frequency, lesser is the volume while speed remains constant as c is speed of light.
Answer: 0.025 moles of nitrogen gas are there in the sample.
Explanation:
According to ideal gas equation:
P = pressure of gas = 1.03 atm
V = Volume of gas = 568 ml = 0.568 L (1L=1000ml)
n = number of moles = ?
R = gas constant =
T =temperature =
0.025 moles of nitrogen gas are there in the sample.
The answer is 100 Pa.
The formula for calculating pressure is :
<u>Pressure = Force ÷ Area</u>
<u />
We are given that :
We also know that :
<u>Force = mass ×g</u>
<u />
So, force will be :
Now, we can finally calculate pressure :
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg