Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
The answer is 3). This is because elements are the simplest form of a substance, and cannot be broken down any further. Compounds on the other hand are much more complex than elements and can be broken down INTO elements.
For example, Na, sodium, is an element and cannot be broken down further. H2O, water, is a compound and can be broken down into Hydrogen and Oxygen.
Moles of Oxygen= 2.8075 moles
<h3>Further explanation</h3>
Given
29.2 grams of acetylene
Required
moles of Oxygen
Solution
Reaction(Combustion of Acetylene) :
2 C₂H₂ (g) + 5 O₂ (g) ⇒ 4CO₂ (g) + 2H₂O (g)
Mol of Acetylene :
= mass : MW Acetylene
= 29.2 g : 26 g/mol
= 1.123
From equation, mol ratio of Acetylene(C₂H₂) : O₂ = 2 : 5, so mol O₂ :
= 5/2 x mol C₂H₂
= 5/2 x 1.123
= 2.8075 moles
Answer:
1.09 moles of NaOH
Explanation:
First of all, to calculate moles, you need to find the molar mass of NaOH.
Let us first find the molar mass of NaOH then.
Na = 23.0 amu
O = 16.0
H = 1.0
They are 1 nitrogen atom, 1 oxygen atom, and one hydrogen atom.
So do this.
23.0(1) + 16.0(1) + 1.0(1) = 40 g/mol.
Now use dimensional analysis to show your work
43.5 g of NaOH * 1 mol of NaOH / 40 g/mol of NaOH
The grams cancel out.
43.5 / 40.0 = 1.0875
Use sig figs and round the answer to the nearest hundredths place.
1.0875 = 1.09
So the final answer is 1.09 moles of NaOH
Hope it helped!