Answer:
See explanation below
Explanation:
In this case, you want to know if you put an object between these forces, which direction would go.
To know this, we need to calculate the moment of an object, which is defined as the product of a force and it's distance. In other words:
M = F * d (1)
And, in order to reach equilibrium the force will exert a direction in clockwise or anticlosewise, and these moments, should be even:
anticlockwise moment = clockwise moment.
The clockwise would be the forces to the right, and anticlock would the only force to the left of the axle.
Clockwise moment = (10 * 0.8) + (25 * 2.6) = 73 Ns
Anticlockwise moment = 34 * 3.5 = 119 Ns.
As we can see, the moment in the anticlockwise is higher than the actual clockwise moment, therefore, we can assume that the object will move anticlockwise, or simply move to the left.
Hope this helps
Answer:

Explanation:
k = Coulomb constant = 
v = Velocity of electron = 
q = Charge of electron = 
m = Mass of electron = 
r = Radius
The electrical and centripetal force will balance each other

The radius of the orbital is 
Spinning top follow the classical mechanics so no space quantization is observed.
The magnitude of the sum of the frictional forces acting on the bike and its rider is 400N.
<h3>What is friction force?</h3>
The friction force is the opposing force which acts on the object which is in relative motion.
The driving force is equal and opposite to the friction force acting between road and bicycle.
Friction force = 400N
The friction force between rider and bike is zero.
So the magnitude of sum of friction force = 400N +0 = 400N
Thus, the magnitude of the sum of the frictional forces acting on the bike and its rider.
Learn more about friction force.
brainly.com/question/1714663
#SPJ1