Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Energy of the waves are redistributed to form a resultant wave with amplitude given by the summation of individual wave's amplitude.
<span>If the two waves are of same frequency, speed and amplitude and travelling in opposite direction den stationary waves are form.</span>
Answer:
B)
Explanation:
Negative (-) charge M will not move towards negative (-) charge K because, same charges will not attract each other in the given case
Negative (-) charge at the M tends to move towards positive (+) charge L in the direction of B) because opposite charges attract each other.
What is being done in shaping is that it directs and guides the change in one's behavior. Therefore, what will happen when one undergoes shaping is that you encourage a lot of minor behaviors which would add up to one large action. The answer to this would be the first option.
In exothermic reactions, heat and light are released to the surrounding environment. On the other hand, in an endothermic reaction, heat is required and therefore it can be considered as a reactant.
- In exothermic reactions, light and heat are released into the environment (Option D).
- Exothermic reactions release energy in the form of heat or light.
- Combustion reactions are generally exothermic reactions.
- After an exothermic reaction takes place it is possible to observe that the energy of the products of the reaction is lesser than the energy of the reactants.
- The energy released in exothermic reactions is evidenced by the increase in temperature of the reaction.
Learn more in: