1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
4 years ago
9

A 1400.0 kg car crests a 3200.0 m pass in the mountains and briefly comes to rest. The car descends 1000 m before climbing and c

resting a 2800 m pass. (a) Neglecting friction, what should the speed of the car be at the top of the second pass? (b) Find the actual speed of the car if the work due to nonconservative forces is – 5 x106 J.
Physics
1 answer:
rjkz [21]4 years ago
4 0

Answer:

a) v = 88.54 m/s

b) vf = 26.4 m/s

Explanation:

Given that;

m = 1400.0 kg

a)

by using the energy conservation

loss in potential energy is equal to gain in kinetic energy

mg × ( 3200-2800) = 1/2 ×m×v²

so

1400 × 9.8 × 400 = 0.5 × 1400 × v²

5488000 = 700v²

v² = 5488000 / 700

v² = 7840

v = √7840

v = 88.54 m/s

b)

Work done by all forces is equal to change in KE

W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)

we substitute

1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf²  -0 )

488000 = 700 vf²

vf² = 488000 / 700

vf² = 697.1428

vf = √697.1428

vf = 26.4 m/s

You might be interested in
Place a small object on the number line below at the position marked zero. Draw a circle around the object. Mark the center of t
Viefleur [7K]
It’s is D bc it is and idk you should do it
6 0
3 years ago
What was a pattern in nature that contributed to an understanding of atoms?
devlian [24]

the fact that chemicals have different colors

7 0
2 years ago
Two blocks with masses 1 and 2 are connected by a massless string that passes over a massless pulley as shown. 1 has a mass of 2
Bess [88]

Answer:

The acceleration of M_2 is  a =  0.7156 m/s^2

Explanation:

From the question we are told that

    The mass of first block is  M_1 =  2.25 \ kg

    The angle of inclination of first block is  \theta _1 =  43.5^o

    The coefficient of kinetic friction of the first block is  \mu_1  = 0.205

      The mass of the second block is  M_2 = 5.45 \ kg

     The angle of inclination of the second block is  \theta _2 =  32.5^o

      The coefficient of kinetic friction of the second block is \mu _2 = 0.105

The acceleration of M_1 \ and\  M_2 are same

The force acting on the mass M_1 is mathematically represented as

     F_1 = T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1

=> M_1 a = T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1

Where T is the tension on the rope

The force acting on the mass M_2 is mathematically represented as    

  F_2 =  M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

   M_2 a =  M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

At equilibrium

  F_1 =  F_2

So

 T -  M_1gsin \theta_1 - \mu_1 M_1 g cos\theta_1 =M_2gsin \theta_2 - T -\mu_2 M_2 g cos\theta_2

making a the subject of the formula

    a =  \frac{M_2 g sin \theta_2 - M_1 g sin \theta_1 - \mu_1 M_1g cos \theta - \mu_2 M_2 g cos \theta_2 }{M_1 +M_2}

substituting values a =  \frac{(5.45) (9.8) sin (32.5) - (2.25) (9.8) sin (43.5) - (0.205)*(2.25) *9.8cos (43.5) - (0.105)*(5.45) *(9.8) cos(32.5) }{2.25 +5.45}

    => a =  0.7156 m/s^2

     

3 0
4 years ago
The wavelength of violet light is about 425 nm (1 nanometer = 1 × 10−9 m). what are the frequency and period of the light waves?
BigorU [14]

1. Frequency: 7.06\cdot 10^{14} Hz

The frequency of a light wave is given by:

f=\frac{c}{\lambda}

where

c=3\cdot 10^{-8} m/s is the speed of light

\lambda is the wavelength of the wave

In this problem, we have light with wavelength

\lambda=425 nm=425\cdot 10^{-9} m

Substituting into the equation, we find the frequency:

f=\frac{c}{\lambda}=\frac{3\cdot 10^{-8} m/s}{425\cdot 10^{-9} m}=7.06\cdot 10^{14} Hz


2. Period: 1.42 \cdot 10^{-15}s

The period of a wave is equal to the reciprocal of the frequency:

T=\frac{1}{f}

The frequency of this light wave is 7.06\cdot 10^{14} Hz (found in the previous exercise), so the period is:

T=\frac{1}{f}=\frac{1}{7.06\cdot 10^{14} Hz}=1.42\cdot 10^{-15} s


4 0
3 years ago
Read 2 more answers
PLEASE HELP ME QUICK
babunello [35]

Answer:

i think its 1.5 m/s to the right?

Explanation:

5 0
3 years ago
Other questions:
  • Explain why cells are so small, considering the relationship between surface area and volume for objects of different sizes but
    12·1 answer
  • The light emitted by an argon laser light includes light with a wavelength of 488 nm. what is the frequency of this light? 6.15
    15·1 answer
  • Which of the following situations is an example of change in momentum? a. a tennis ball hit into a net b. a helium ballon rising
    6·1 answer
  • A 90kg woman and a 60kg boy are standing at rest on a frictionless frozen lake. The boy pushes the woman with a 40N horizontal f
    7·1 answer
  • A point source emits electromagnetic energy at a rate of 100 W. The intensity 10 m from the source is
    9·1 answer
  • What property of sound enables us to distinguish one sound source from another?
    13·1 answer
  • If at a particular instant and at a certain point in space the electric field is in the x-direction and has a magnitude of 3.70
    7·1 answer
  • A 500 N force is applied to an object accelerating at 25 m/s^2.<br> what is the mass of the object?
    7·1 answer
  • What is the magnitude of a point charge whose electric field 50cm away has a magnitude of 2N/C
    14·1 answer
  • Which statements best describe shared characteristics? Select two options.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!