<h2>Greetings!</h2>
To find speed, you need to remember the formula:
Speed = distance ÷ time
So plug the given values in:
500 ÷ 30 = 16.66
<h3>So the speed is 16.66m/s (metres per second)</h3>
<h2>Hope this helps!</h2>
Answer: Because the angle of attack is so high, a lot of momentum is transferred downward into the flow. These two features create a large amount of lift force as well as some additional drag.
Brainlest would be much appreciated.
Answer:
One 200 is bigger than 100
Explanation:
B is the answer to your question
Answer:
6.5 m above the floor and 5 m above Christine's hand when it reaches the maximum height.
Explanation:
Let g = 10 m/s2 be the gravitational deceleration that affects the ball vertical motion so it comes to the maximum height at 0 speed. We can use the following equation of motion to find out the distance traveled by the ball from where it's thrown:

where v = 0 m/s is the final velocity of the ball when it reaches maximum level,
= 10m/s is the initial velocity of the ball when it starts, g = -10 m/s2 is the deceleration, and
is the distance traveled, which we care looking for:


So the ball is 5 m above Christine' hands when it reaches maximum height, and since the hand is 1.5 m above the floor, the ball is 5 + 1.5 = 6.5 m above the floor when it reaches maximum height.