The acceleration is 
Explanation:
This is a uniformly accelerated motion (constant acceleration), therefore we can apply the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the scooter in this problem, we have
u = 0 (it starts from rest)
v = 10.0 m/s is the final velocity
t = 4.0 s is the time interval
Solving for a, we find the acceleration:

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
<span>Answer:
So it gets to the top of the ramp and stops. The parallel force pushing it down the ramp is mg sin θ, but for it to move, the frictional force must be overcome. This frictional force is μmg cos θ, where μ is the coefficient of static friction. For movement, then,
mg sin θ > μmg cos θ ==> tan θ > μ ==> θ > arctan 0.5 = 26.565° ==> θ = 27°</span>
Answer:
Explanation:
If the passage of the waves is one crest every 2.5 seconds, then that is the frequency of the wave, f.
The distance between the 2 crests (or troughs) is the wavelength, λ.
We want the velocity of this wave. The equation that relates these 3 things is
and filling in:
so
v = 2.5(2.0) and
v = 5.0 m/s
Answer:
533.33 nm
Explanation:
Since dsinθ = mλ for each slit, where m = order of slit and λ = wavelength of light. Let m' = 10 th order fringe of the first slit of wavelength of light, λ = 640 nm and m"= 12 th order fringe of the second slight of wavelength of light, λ'.
Since the fringes coincide,
m'λ = m"λ'
λ' = m'λ/m"
= 10 × 640 nm/12
= 6400 nm/12
= 533.33 nm
Answer:
Magnetic fields exist near a magnet, farther away from a magnet, and within a magnet.
So, the answer is D. All of the above.
Let me know if this helps!