Answer:
176.9N
Explanation:
The following data were given
wire length,L=37cm=0.37m
linear density=18g/m
tube length,=192cm=1.92m,
speed of sound,v=343m/s
Since it is an open-closed tube, the second harmonic frequency is expressed as

The relationship between the tension, linear density and second harmonic frequency is expressed as

Answer:

Explanation:
We are given that
Mass of one asteroid 1,
Mass of asteroid 2,
Initial distance between their centers,d=13.63 R
Radius of each asteroid=R
d'=R+R=2R
Initial velocity of both asteroids

We have to find the speed of second asteroid just before they collide.
According to law of conservation of momentum




According to law of conservation of energy







Hence, the speed of second asteroid =
(a) 2NO(g) + O₂(g) ⇄2NO₂(g)kp
(b) 2N₂O(g)⇄2NO(g) + N₂(g) kp
(c) N₂(g) + O₂(g)⇄ 2NO(g) kp
Now A is
2NO +O₂⇄2NO₂
ΔG° =ΔG° products - ΔG reactants
=2× 51.3-(256.6)
-70.6kJ/mol.
ΔG° = -RT Inkp
-70.6 = -8.314 ×10⁻³ ˣ 298.15 ˣInkJ
InkJ = 28.48
kp=2.34 ˣ 10¹²
B is
ΔG° = 2× 86.6 - 2 × 104.2 = -35.2
-35.2 = 8.314 × 10⁻³ ˣ 298.15 ˣInkJ
InkJ = 14.2
kp = 1.47ˣ 10⁶
C is
It is also similar
kp = 4.62 ˣ 10⁻³I
Answer:
The height of the water slide is 0.878 m
Explanation:
Given that,
Distance = 2.52 m
Suppose Children slide down a friction less water slide that ends at a height of 1.80 m above the pool.
We need to calculate the time
Using equation of motion

Put the value in the equation




We need to calculate the velocity
Using formula of velocity

Put the value into the formula


We need to calculate height
Using conservation of energy


Put the value into the formula


Hence, The height of the water slide is 0.878 m.