Answer:
The magnetic field through the wire must be changing
Explanation:
According to Faraday's law, the induced emf, ε in a metallic conductor is directly proportional to the rate of change of magnetic flux,Φ through it. This is stated mathematically as ε = dΦ/dt.
Now for the wire, the magnetic flux through it is given by Φ = ABcosθ where A = cross-sectional area of wire, B = magnetic field and θ = angle between A and B.
So, dΦ/dt = dABcosθ/dt
Since A and B are constant,
dΦ/dt = ABdcosθ/dt = -(dθ/dt)ABsinθ
Since dθ/dt implies a change in the angle between A and B, since A is constant, it implies that B must be rotating.
So, <u>for an electric current (or voltage) to be produced in the wire, the magnetic field must be rotating or changing</u>.
<h3><u>Answer;</u></h3>
= 20.436 seconds
<h3><u>Explanation;</u></h3>
Speed = Distance × time
Therefore;
Time = Distance/speed
Distance = 7.50 m, speed = 0.367 m/s
Time = 7.50/0.367
<u>= 20.436 seconds </u>
Answer:
42.6 m
Explanation:
mass of crate m = 53 kg
coefficient of kinetic friction, μ = 0.36
acceleration due to gravity, g = 9.8 m/s^2
Force, F = 372.098 N
Net force, f = F - friction force
f = 372.098 - μ m x g = 372.098 - 0.36 x 53 x 9.8
f = 185.114 N
acceleration, a = f / m = 185.114 / 53 = 3.49 m/s^2
initial velocity, u = 0
time, t = 4.94 s
s = ut + 1/2 at^2
s = 0 + 1/2 x 3.49 x 4.94 x 4.94
s = 42.6 m