The fundamental frequency of this open-open pipe is 8.82 Hz
The quantity of waves that pass a set location in a predetermined period of time is known as frequency. Frequency is the number of full cycles per second in the alternating current direction for an oscillating or fluctuating current. The hertz, also known as Hz, is the accepted unit of frequency.
The temporal rate of change observed in oscillatory and periodic phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light, is specified by the frequency, an essential parameter in science and engineering.
Assume vs = 344 m/s
f1 = vs/2L
= 344 m/s/ 2∙64 ft/(3.281 ft/m)
= 8.82 Hz
To know more about Frequency refer:
brainly.com/question/14131991
#SPJ4
Well they could go down a hill to gain more kinetic energy.
The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
Answer:
Engular velocity: 
Linear velocity: 
The time it takes:

Explanation:
The magnitude of the centripetal acceleration can be related to the angular velocity and radius as:
(1)
Solving for w:
(2)
Replacing a=9,8m/s2 and r=6,375,000m:
(3)
And the angular velocity relates to the linear velocity:

The perimeter of the orbit is:

The time it takes:

Answer:
I'm sorry but I dont really know this answer