Ar (argon) has 18 electrons
Cl- would give you 18 electrons
F- would give you 10 electrons
Li+ would give you 2 electrons
Na+ would give you 10 electrons
Cl- would be the correct answer
The true answer is: It's conserved because the total number of H atoms on each side is 12.
the first two answer is wrong because it's conserved not as mentioned, It's not conserved.
and the last one also wrong because the total number of O atoms are equal at the two sides but not equal 2.
<u>Answer:</u> The volume of given amount of ethanol at this temperature is 159.44 mL
<u>Explanation:</u>
Specific gravity is given by the formula:

We are given:
Density of water = 0.997 g/mL
Specific gravity of ethanol = 0.787
Putting values in above equation, we get:

Density is defined as the ratio of mass and volume of a substance.
......(1)
Given values:
Mass of ethanol = 125 g
Density of ethanol = 0.784 g/mL
Putting values in equation 1, we get:

Hence, the volume of given amount of ethanol at this temperature is 159.44 mL
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ