1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorLugansk [536]
3 years ago
9

Why carbon is not used as a semiconductor material​

Engineering
1 answer:
dmitriy555 [2]3 years ago
8 0
Carbon is not used as semiconductor it has 4 valence electrons in it valence shell but the energy gap is very small it will conduct electricity even at room temperature ,the size of carbon is very small .
You might be interested in
A cylindrical metal specimen having an original diameter of 11.34 mm and gauge length of 53.3 mm is pulled in tension until frac
WINSTONCH [101]

Answer:

a) 70.29 %

b) 37%

Explanation:

percent reduction can be found from:

PR = 100*(π(do/2)^2-π(df/2)^2)/π(do/2)^2

     = 100*(π(11.34/2)^2-π(6.21/2)^2)/π(11.34/2)^2

     =70.29 %

percent elongation can be found from:

EL =L_f - Lo/Lo*100

    = (73.17 -53.3/53.3)*100

    = 37%

5 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
what i the maximum flow rate of glycerine at 20C in a 10cm diameter pipe that can be assumed to remain laminar
ELEN [110]

Answer: tube flow

Explanation:

7 0
2 years ago
How many watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes?.
Anna71 [15]

The watts that are consumed is 80 watts.

<h3>What power factor?</h3>

The term power factor has to do with the measure of the efficiency of the use of energy. Recall that power is defined as the rate of doing work. The magnitude of the power factor shows the extent to which the power is used.

Now, to obtain the watts are consumed in a circuit having a power factor of 0. 2 if the input is 100 vac at 4 amperes we have;  V × I × PF = 100V × 4A × 0.2 = 80 watts.

Learn more about power factor:brainly.com/question/10634193

#SPJ4

6 0
2 years ago
I'll mark brainliest plz help
Citrus2011 [14]

Answer:

Explanation:

There are three points in time we need to consider.  At point 0, the mango begins to fall from the tree.  At point 1, the mango reaches the top of the window.  At point 2, the mango reaches the bottom of the window.

We are given the following information:

y₁ = 3 m

y₂ = 3 m − 2.4 m = 0.6 m

t₂ − t₁ = 0.4 s

a = -9.8 m/s²

t₀ = 0 s

v₀ = 0 m/s

We need to find y₀.

Use a constant acceleration equation:

y = y₀ + v₀ t + ½ at²

Evaluated at point 1:

3 = y₀ + (0) t₁ + ½ (-9.8) t₁²

3 = y₀ − 4.9 t₁²

Evaluated at point 2:

0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²

0.6 = y₀ − 4.9 t₂²

Solve for y₀ in the first equation and substitute into the second:

y₀ = 3 + 4.9 t₁²

0.6 = (3 + 4.9 t₁²) − 4.9 t₂²

0 = 2.4 + 4.9 (t₁² − t₂²)

We know t₂ = t₁ + 0.4:

0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)

0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))

0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)

0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)

0 = 2.4 − 3.92 t₁ − 0.784

0 = 1.616 − 3.92 t₁

t₁ = 0.412

Now we can plug this into the original equation and find y₀:

3 = y₀ − 4.9 t₁²

3 = y₀ − 4.9 (0.412)²

3 = y₀ − 0.83

y₀ = 3.83

Rounded to two significant figures, the height of the tree is 3.8 meters.

7 0
3 years ago
Other questions:
  • When the outside temperature is 5.2 ⁰C, a steel beam of cross-sectional area 52 cm2 is installed in a building with the ends of
    8·1 answer
  • A 300 mm long steel bar with a square cross section (25 mm per edge) is pulled in tension with a load of 83,051 N , and experien
    10·1 answer
  • Using any of the bilinear transform, matched pole-zero, or impulse invariance techniques in converting a continuous-time system
    14·2 answers
  • An ideal gas mixture has a volume base composition of 40% Ar and 60% Ne (monatomic gases). The mixture is now heated at constant
    8·1 answer
  • 1 kg of oxygen is heated from 20 to 120°C. Determine the amount of heat transfer required when this is done during a (a) constan
    7·1 answer
  • The Hubble Space Telescope is an optical imaging telescope with extremely good angular resolution. Someone discovers an object t
    13·1 answer
  • Technician A says that a lack of lubrication on the back of the disc brake pads can cause brake noise. Technician B says that pa
    8·1 answer
  • What is brainstorming and why is it important to create the perfect solution to a problem? giving brainliest to the first answer
    11·1 answer
  • Which statement is true about the future of space travel?
    15·1 answer
  • What the minimum wire size for a general residential application on a 20 A circuit
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!