For the first one 320
second
1200W
Data
R = 12 Ω ∆V = 120V I =? P =?
Solution:
According to Ohm’s law,
∆V = I R
I = ∆V / R
= 120 / 12
= 10 A
Power P = I ∆V
= 10 x 120
= 1200 W
Third
∆V = 120 V P = 60 W I =? R =?
Use the formula, P = I ∆V
I = P / ∆V = 60 / 120 = 0.5 A
∆V = I R
R = ∆V / I = 120 / 0.5 = 240 Ω
Answer:
What is the problem I cant help unless you have the problem.
Explanation:
The final velocity of the two pucks is -5 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum.
In fact, in absence of external force, the total momentum of the two pucks before and after the collision must be conserved - so we can write:

where
is the mass of each puck
is the initial velocity of the 1st puck
is the initial velocity of the 2nd puck
v is the final velocity of the two pucks sticking together
Re-arranging the equation and solving for v, we find:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
The statement would be False. T<span>he potential energy of a membrane potential comes solely from the difference in electrical charge across the membrane. In addition to that, membrane potential actually regulates the potential difference of nerve cells across the membrane estimated at 70 mV.</span>