Answer:
Copper is a better heat conductor than glass. In general, we think of metals as good conductors. In fact, metals vary widely in their conductivity but, overall, they are better conductors of heat than most liquids and gasses. Other solids also vary in their capability to conduct heat.
Explanation:
Answer:
The nature of the environment and the animal's interaction with it determines much of the character of the brain.
Explanation:
In fact, most of what we would use to describe ourselves to others reflects this sort of information storage. Much of this information is unique to the individual and hence may involve different mechanisms from those used for species-typical information storage.
The Answer that makes the most sense is C.
Answer:
a) μ = 0.1957
, b) ΔK = 158.8 J
, c) K = 0.683 J
Explanation:
We must solve this problem in parts, one for the collision and the other with the conservation of energy
Let's find the speed of the wood block after the crash
Initial moment. Before the crash
p₀ = m v₁₀ + M v₂₀
Final moment. Right after the crash
pf = m
+ M v_{2f}
The system is made up of the block and the bullet, so the moment is preserved
p₀ = pf
m v₁₀ = m v_{1f} + M v_{2f}
v_{2f} = m (v₁₀ - v_{1f}) / M
v_{2f} = 4.5 10-3 (400 - 190) /0.65
v_{2f} = 1.45 m / s
Now we can use the energy work theorem for the wood block
Starting point
Em₀ = K = ½ m v2f2
Final point
Emf = 0
W = ΔEm
- fr x = 0 - ½ m v₂₂2f2
The friction force is
fr = μN
With Newton's second law
N- W = 0
N = Mg
We substitute
-μ Mg x = - ½ M v2f2
μ = ½ v2f2 / gx
Let's calculate
μ = ½ 1.41 2 / 9.8 0.72
μ = 0.1957
b) let's look for the initial and final kinetic energy
K₀ = 1/2 m v₁²
K₀ = ½ 4.50 10⁻³ 400²
K₀ = 2.40 10² J
Kf = ½ 4.50 10⁻³ 190²
Kf = 8.12 10¹ J
Energy reduction is
K₀ - Kf = 2.40 10²- 8.12 10¹
ΔK = 158.8 J
c) kinetic energy
K = ½ M v²
K = ½ 0.650 1.45²
K = 0.683 J
Answer: q=5.70 x 10^13 C
Explanation:
gravitational attraction = electrostatic repulsion GMm/d^2 = kQ^2/d^2 as you can see the d^2 cancel out. that is why lunar distance is irrelevant. G is the universal gravitational constant = 6.67 x 10^-11 m^3 / kgs^2 M is earth's mass = 5.972 × 10^24 kg m is moon's mass = 7.342×10^22 kg Q is charge on earth and moon. k is coulomb's constant = 9 x10^9 N m^2 /C^2 On solving equation for Q. Q = sqrt (GMm/k) = sqrt ( 6.67 x 10^-11 x 5.972 x 10^24 * 7.342×10^22 / 9 x10^9) = 5.70 x 10^13 C