Answer:

Explanation:
P = Power = 50 kW
n = Number of photons per second
h = Planck's constant = 
= Frequency = 781 kHz
r = Distance at which the photon intensity is i = 1 photon/m²
Power is given by

Photon intensity is given by

The distance is 
(3) The frictional force exerted by the floor on the box
<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>
If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.