Correct temperature is 80°F
Answer:
T_f = 38.83°F
Explanation:
We are given;
Volume; V = 8 ft³
Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature; T_i = 80°F = 539.67 °R
Time for outlet flow; t_o = 90 s
Mass flow rate at outlet; m'_o = 0.03 lb/s
Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
Where v is initial specific volume
R is ideal gas constant = 53.33 ft.lbf/°R
Thus;
v = RT/P
v_i = 53.33 × 539.67/(100 × 12²)
v_i = 2 ft³/lb
Formula for initial mass is;
m_i = V/v_i
m_i = 8/2
m_i = 4 lb
Now change in mass is given as;
Δm = m'_o × t_o
Δm = 0.03 × 90
Δm = 2.7 lb
Now,
m_f = m_i - Δm
Thus; m_f = 4 - 2.7
m_f = 1.3 lb
Similarly in above;
v_f = V/m_f
v_f = 8/1.3
v_f = 6.154 ft³/lb
Again;
Pv = RT
Thus;
T_f = P_f•v_f/R
T_f = (30 × 12² × 6.154)/53.33
T_f = 498.5°R
Converting to °F gives;
T_f = 38.83°F
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium. While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.
The density of an object can be calculated using the formula Density = Mass/Volume. In this case however we are searching for the volume and must rearrange the formula so that we are solving for the volume. If you multiply both sides by volume and then divide both sides by mass you end up with the equation Volume = Mass/Density.
Volume = 1500g/1.5g/cm^3
Volume = 1000 cm^3
Answer:
d = 375 m
Explanation:
The speed of sound is constant in any medium, therefore we can use the uniform motion relationships
v = x / t
x = v t
In this case it indicates that the time since the sound is emitted and received is t = 0.50 s, in this time the sound traveled a round trip distance
x = 2d
2d = v t
d = v t/2
let's calculate
d = 1500 0.5 / 2
d = 375 m