Answer:
a = 1.055 x 10¹⁷ m/s²
Explanation:
First, we will find the force on electron:

where,
F = Force = ?
E = Electric Field = 6 x 10⁵ N/C
q = charge on electron = 1.6 x 10⁻¹⁹ C
Therefore,

F = 9.6 x 10⁻¹⁴ N
Now, we will calculate the acceleration using Newton's Second Law:

where,
a = acceleration = ?
m = mass of electron = 9.1 x 10⁻³¹ kg
therefore,

<u>a = 1.055 x 10¹⁷ m/s²</u>
Ans: R = Ball Travelled = 92.15 meters.
Explanation:
First we need to derive that formula for the "range" in order to know how far the ball traveled before hitting the ground.
Along x-axis, equation would be:

Since there is no acceleration along x-direction; therefore,

Since

and

=0; therefore above equation becomes,

--- (A)
Now we need to find "t", and the time is not given. In order to do so, we shall use the y-direction motion equation. Before hitting the ground y ≈ 0 and a = -g; therefore,
=>

=>

Since

; therefore above equation becomes,

Put the value of t in equation (A):
(A) =>

Where x = Range = R, and

; therefore above equation becomes:
=>

Now, as:

and

°
and g = 9.8 m/(s^2)
Hence,
Ans: R = 92.15 meters.-i
The answer is 4. accelerating to move off the road as quickly as possible
Answer:
Damian here! (ノ◕ヮ◕)ノ*:・゚✧
Stretching is used to improve range-of-motion (ROM) of a joint, but why? The most common reason is that the joint ROM is limited and is somehow affecting performance of a desired activity. Stretching is also used as a preventative measure.
Explanation:hope this helps? :))
Answer: C and D
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
The equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.
Explanation: According to Newton's first law of motion which state that; A body at rest will continue to be at rest, or in linear motion will continue to move in a straight line, unless an external force act on it.
The equipment would have stayed in the same exact location indefinitely until the very moment the astronaut applied force to it.
immediately the astronaut apply force to the object by pushing in, Newton's first law will be manifested in which the equipment will continue moving in the same direction indefinitely unless another force is applied to stop it.