<span>the line through points (-1,-2) and (5,3)
slope=(3-(-2))/(5-(-1))=5/6
for a perpendicular line slope =-6/5=-1.2
y=(-6/5)x+b
7=(-6/5)*3+b
7=-18/5+b
7=-36/10+b
7=-3.6+b
b=10.6
y=-1.2x+10.6</span>
∫( (sinx) / (2 - 3cosx)) dx.
From laws of integration: ∫ f¹(u) / f(u) du = In(f(u)) + constant.
d/dx (2 - 3cosx) = 0 -3(-sinx) = 3sinx.
1/3d/dx(2 - 3cosx) = (1/3)*3sinx = sinx.
∫ ((sinx) / (2 - 3cosx)) dx. = ∫ ((1/3) d/dx (2 - 3cosx) / (2 - 3cosx))dx
= 1/3 ∫ (d/dx (2 - 3cosx) / (2 - 3cosx))dx
= (1/3)ln(2 - 3cosx) + Constant.
Answer:
2x^2 +11
Step-by-step explanation:
(x) = 3 x^2 + 2
g(x) = x^2 - 9
(f - g)(x) =3 x^2 + 2 - (x^2 - 9)
Distribute the minus sign
= 3x^2 +2 - x^2 +9
Combine like terms
= 2x^2 +11
The answer is mean absolute deviation
Answer:
Step-by-step explanation:
givens
x1 = 3
x2 = 4
y1 = 4
y2 = 7
formula
d = sqrt( (x1 - x2)^2 + (y1 - y2)^2 )
solution
d = sqrt( (3 - 4)^2 + (4 - 7)^2 )
d = sqrt ( 1 + 3^2)
d = sqrt( 1 + 9)
d = sqrt( 10)