<h2>Answer </h2>
Some mass changes into energy
<u>Explanation </u>
Some mass changes into energy are true about both nuclear fusion and nuclear fission. These both reactions produce large amounts of energy. Nuclear fusion is the process in which two light nuclei combine to form a larger nucleus. On the other hand, nuclear fission is reverse in which a heavy nucleus breaks into two light nuclei. Nuclear decay and transmission are also types of nuclear reactions. The matter is not destroyed in nuclear reactions.
The following chemical reaction will occur:
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
Explanation:
Because the bromide (Br₂) have a higher reactivity than iodide (I₂) it is able the remove the iodide from its salts. So the bromide will react with sodium iodine (NaI) to produce sodium bromide (NaBr) and iodine.
The chemical reaction is:
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
where:
(l) - liquid
(s) - solid
Learn more about:
balancing chemical equations
brainly.com/question/13971935
#learnwithBrainly
Answer:
The hot tea should transfer <em>25.63 kJ</em> the surroundings to cool the tea.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat has to be transferred from the tea to the surroundings to cool the tea (Q = ??? J).
m is the mass of the hot tea (m = dV = (1.0 g/mL)(250 mL) = 250 g), suppose the density of water is the density of tea.
c is the specific heat of the hot tea (c = 4.10 J/°C.g).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 350 K - 375 K = -25°C).
<em>∴ Q = m.c.ΔT</em> = (250 g)(4.10 J/°C.g)(-25°C)) = <em>- 25630 J = - 25.63 kJ.</em>
<em>So, the hot tea should transfer 25.63 kJ the surroundings to cool the tea.</em>
Answer:
It can be formed either through a process of evaporation or sublimation. Unlike clouds, fog, or mist which are simply suspended particles of liquid water in the air, water vapour itself cannot be seen because it is in gaseous form
Explanation:
hope it help