6 + 2(x - 5) = -40 - 5(x - 3)
6 + 2x - 10 = -40 - 5x + 15
-4 + 2x = -25 - 5x
2x = -21 - 5x
7x = -21
x = -3
Answer:
20
Step-by-step explanation:
A left Riemann sum approximates a definite integral as:

Here, the integral is ∫₀² 9ˣ dx, and the number of subintervals is n = 4.
So Δx = 2/n = 1/2, and x = 2(k−1)/n = (k−1)/2.
Plugging in:
∑₁⁴ 9^((k−1)/2) (1/2)
1/2 ∑₁⁴ 9^((k−1)/2)
1/2 (9^((1−1)/2) + 9^((2−1)/2) + 9^((3−1)/2) + 9^((4−1)/2))
1/2 (9^(0) + 9^(1/2) + 9^(1) + 9^(3/2))
1/2 (1 + 3 + 9 + 27)
20
Hey there! Your answer is:
1,963
Step-by-step explanation:
Please mark Brainliest<3
Answer:
(-1, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
10x + 6y = 14
-x - 6y = -23
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Elimination</em>
- Add 2 equations together: 9x = -9
- Divide 9 on both sides: x = -1
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: -x - 6y = -23
- Substitute in <em>x</em>: -(-1) - 6y = -23
- Multiply: 1 - 6y = -23
- Subtract 1 on both sides: -6y = -24
- Divide -6 on both sides: y = 4