Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.

Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
False, as oceans can act as carbon sinks along with forests.
<h3>
Answer:</h3>
0.10 L
<h3>
Explanation:</h3>
The concentration of glucose is given as 180 g/L
The mass of glucose is 18 g
- Concentration in g/L is calculated by dividing mass of the solute by the volume of the solution.
- When calculating molarity on the other hand, we divide number of moles of the solute by the volume of the solution.
- Concentration in g/L = Mass of solute ÷ Volume
Rearranging the formula,
Volume = Mass of the solute ÷ concentration
= 18 g ÷ 180 g/L
= 0.10 L
Therefore, volume of water is 0.10 L
Organic molecules typically do not contain the noble gases, so they would contain all but Ne
(B), because 1.0 moles would be 6.02 x 10^23 molecules. So you have half a mole.<span>
</span>