They bond because they want to make their outer electron shells more stable
Hope this helps
Have a happy holidays
Answer:
14700J
Explanation:
From the question given, the following were obtained:
M = 100g
ΔT = 35° C
C = 4.2J/g °C
Q=?
The heat transferred can calculated for by using the following equation
Q = MCΔT
Q = 100 x 4.2 x 35
Q= 14700J
Let the acid be HA.
The chemical formula for this acid will be the following:

The formula for the <span>acid dissociation constant will be the following:
</span>
![K_a= \dfrac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cdfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
<span>
We know [H+]=0.0001 (it's given).
However, we must find [A-] and [HA] in order to solve for the constant.
We find that [A-]=[H+] by using a electroneutrality equation.
Also, we can create a concentration equation to find [HA].
</span>
![0.5M=[A^-]+[HA]](https://tex.z-dn.net/?f=0.5M%3D%5BA%5E-%5D%2B%5BHA%5D)
![[HA]=0.5M-[A^-]](https://tex.z-dn.net/?f=%5BHA%5D%3D0.5M-%5BA%5E-%5D)
<span>
Now, we can find the acid dissociation constant.
</span>
![K_a= \dfrac{[H^+][A^-]}{0.5M-[A^-]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cdfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B0.5M-%5BA%5E-%5D%7D)
To correct her measurement to standard temperature and pressure (STP), she must <span>make a volume correction based on a higher temperature of 273 K. The answer is letter B. This is in order to correct the temperature and pressure because correcting the volume will indicate that the temperature and pressure will result to the opposite result of the volume. This is because volume is indirectly proportional with pressure and temperature.</span>
Answer:
876 grams
Explanation:
Convert specific gravity to density, using water density 1.0 g/ml
d = e.g x 1.0 g/ml = 1.168 g/ml
d = m/v (mass/volume)
m = dxv = 1.168 g/ml x 750 ml = 876 grams