Step-by-step explanation:
![f(x)=x^2,\ g(x)=x+6,\ h(x)=7\\\\h(x)=7\ \text{It's the constant function. Therefore}\ h\{g[f(x)]\}=7](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E2%2C%5C%20g%28x%29%3Dx%2B6%2C%5C%20h%28x%29%3D7%5C%5C%5C%5Ch%28x%29%3D7%5C%20%5Ctext%7BIt%27s%20the%20constant%20function.%20Therefore%7D%5C%20h%5C%7Bg%5Bf%28x%29%5D%5C%7D%3D7)
<span>Simplifying
(7 + -2x)(11 + -2x)(x) = 0
Reorder the terms for easier multiplication:
x(7 + -2x)(11 + -2x) = 0
Multiply (7 + -2x) * (11 + -2x)
x(7(11 + -2x) + -2x * (11 + -2x)) = 0
x((11 * 7 + -2x * 7) + -2x * (11 + -2x)) = 0
x((77 + -14x) + -2x * (11 + -2x)) = 0
x(77 + -14x + (11 * -2x + -2x * -2x)) = 0
x(77 + -14x + (-22x + 4x2)) = 0
Combine like terms: -14x + -22x = -36x
x(77 + -36x + 4x2) = 0
(77 * x + -36x * x + 4x2 * x) = 0
(77x + -36x2 + 4x3) = 0
Solving
77x + -36x2 + 4x3 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), 'x'.
x(77 + -36x + 4x2) = 0
Factor a trinomial.
x((7 + -2x)(11 + -2x)) = 0
</span>
Answer:
The answer is below
Step-by-step explanation:
The question is not complete. The complete question is:
The 12 foot long bed of a dump truck loaded with debris must rise an angle of 30 degrees before the debris will spill out. Approximately how high must the front of the bed rise for the debris to spill out.
Solution:
Let x be the height of the front of the bed rise needed to be raised for the debris to spill out. We can find x using trigonometric identities. That is:
sin θ = opposite / hypotenuse
Using trigonometric identities, we can get that:
sin(30) = x / 12
This gives:
0.5 = x / 12
Cross multiplying the terms to get:
x = 12 * 0.5
x = 6 ft
Therefore the front of the bed rise must be raised 6 ft for the debris to spill out.
Answer:
There are 1,000 mL in a L
Step-by-step explanation:
All the other answers are wrong
Hey ! there
Answer:
- n is equal to <u>3 </u><u>meters</u>
Step-by-step explanation:
In this question we are provided with a cube having <u>volume </u><u>2</u><u>7</u><u> </u><u>cubic </u><u>meters</u><u> </u>. And we are asked to find the <u>value </u><u>of </u><u>n </u>that is basically its <u>edge </u><u>.</u>
For finding the value of n we need to know the volume of cube. So ,

<u>Where</u><u> </u><u>,</u>
- a refers to <u>edge </u><u>of </u><u>cube</u>
<u>SOLUTION</u><u> </u><u>:</u><u> </u><u>-</u>
Substituting given volume that is 27 m³ and value of a as n in formula :

Applying cube root on both sides :
![\quad \longrightarrow \qquad \: \sqrt[3]{n {}^{3} } = \sqrt[3]{27}](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A%20%20%5Csqrt%5B3%5D%7Bn%20%7B%7D%5E%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B27%7D%20)
We get ,
![\quad \longrightarrow \qquad \:n= \sqrt[3]{27}](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3An%3D%20%20%5Csqrt%5B3%5D%7B27%7D%20)
We know that 3 × 3 × 3 is equal to 27 that means cube root of 27 is 3 . So ,

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value</u><u> </u><u>of </u><u>n </u><u>is </u><u>❝</u><u> </u><u>3 </u><u>meters </u><u>❞</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
Now we are checking our answer whether it is wrong or right by substituting value of n and equating it with given volume that is 27 cubic meters . So ,
- a³ = 27 ( where a is equal to n )
Substituting values :
<u>Therefore,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>