QUESTION:
The code for a lock consists of 5 digits (0-9). The last number cannot be 0 or 1. How many different codes are possible.
ANSWER:
Since in this particular scenario, the order of the numbers matter, we can use the Permutation Formula:–
- P(n,r) = n!/(n−r)! where n is the number of numbers in the set and r is the subset.
Since there are 10 digits to choose from, we can assume that n = 10.
Similarly, since there are 5 numbers that need to be chosen out of the ten, we can assume that r = 5.
Now, plug these values into the formula and solve:
= 10!(10−5)!
= 10!5!
= 10⋅9⋅8⋅7⋅6
= 30240.
Answer: 75 cm per hour
Step-by-step explanation:
375 divided by 5=75
The answer to question 5 is -3.
The answer to question 9 is -5.<span>
</span>The answer to question 7 is 28x^3y^4.
D: 1/6 * 2 = 2/12
hope this helps :) (please mark brainliest!)
Answer:
-sqrt(3)/2
Step-by-step explanation:
Use double angle identity for sin(2x)
sin(2x)=2sin(x)cos(x)
We are given sin(x)=-1/2 so we already have so far that:
sin(2x)=2(-1/2)cos(x)
sin(2x)=-1*cos(x)
We just need to find cos(x).
x is in the fourth quadrant so cosine will be positive there
knowing the unit circle we should know that if sin(x)=-1/2 then cos(x)=sqrt(3)/2 while in 4th quadrant.
So the answer is sin(2x)=-1*sqrt(3)/2=-sqrt(3)/2