Answer:
Explanation:
Whenever you see molar masses in gas law questions, more often than not density will be involved. This question is no different. To solve this, however, we will first need to play with the combined ideal gas equation PV=nRT to make it work for density and molar mass. The derivation is simple but for the sake of time and space, I will skip it. Hence, just take my word for it that you will end up with the equation:M=dRTPM = molar mass (g/mol)d = density (g/L)R = Ideal Gas Constant (≈0.0821atm⋅Lmol⋅K) T = Temperature (In Kelvin) P = Pressure (atm)As an aside, note that because calculations with this equation involve molar mass, this is the only variation of the ideal gas law in which the identity of the gas plays a role in your calculations. Just something to take note of. Back to the problem: Now, looking back at what we're given, we will need to make some unit conversions to ensure everything matches the dimensions required by the equation:T=35oC+273.15= 308.15 KV=300mL⋅1000mL1L= 0.300 LP=789mmHg⋅1atm760mmHg= 1.038 atmSo, we have almost everything we need to simply plug into the equation. The last thing we need is density. How do we find density? Notice we're given the mass of the sample (0.622 g). All we need to do is divide this by volume, and we have density:d=0.622g0.300L= 2.073 g/LNow, we can plug in everything. When you punch the numbers into your calculator, however, make sure you use the stored values you got from the actual conversions, and not the rounded ones. This will help you ensure accuracy.M=dRTP=(2.073)(0.0821)(308.15)1.038= 51 g/molRounded to 2 significant figuresNow if you were asked to identify which element this is based on your calculation, your best bet would probably be Vandium (molar mass 50.94 g/mol). Hope that helped :)
Answer:
6.76 moles.
Explanation:
2CO(g)+O2 (g) =2CO2(g)
When 2 CO mols were reacted with excess O2 then 2 mols of CO2 is created.
Therefore if 6.76 moles reacted, same number of CO2 will be created.
Answer:
With respect to a fixed point, motion is defined as a change in<u> position.</u>
Explanation:
MOTION -: Motion is described as the fact in which any object or body changes its position over the time with respect to a fixed point .
Motion is defined as displacement, distance, velocity , acceleration, speed , and time in mathematical terms. By linking an observer to a frame of reference and measuring the shift in the position of the body with a change in time relative to that frame, the motion of a body is observed.
The exponential is 3.007 times 10 to the -5