Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
The answer to this is Codon.
According to Raoult's law, Vapor pressure is directly proportional to the mole fraction of the solution. As 1.0 M CaF2 has least moles here, it has lowest vapor pressure.
In short, Your Answer would be Option D
Hope this helps!
The number of oxygen atoms is in 5.00 g of sample of sodium dichromate, Na₂Cr₂O₇ is 1.125 x 10²³ atoms.
<h3>What is sodium dichromate?</h3>
Sodium dichromate is an inorganic compound. It is sued in tanning and mental illness.
The molar mass of sodium = 23 gm
The molar mass of Cr = 51.99 gm
The molar mass of oxygen = 16 gm
Molar mass of Na₂Cr₂O₇ = 2(23) + 2(51.99) + 7(16) = 261.98 gm
Number of moles in 7 gm = mass / molar mass = 7 / 261.98 = 0.0267 moles
1 mole of Na₂Cr₂O₇ contains 7 moles of oxygen, therefore:
The number of moles of oxygen in 0.0267 moles = 0.0267 x 7 = 0.1869 moles
Thus, the number of atoms = 0.1869 x 6.02 x 10^23 = 1.125 x 10²³ atoms.
To learn more about sodium dichromate, refer to the link:
brainly.com/question/1444529
#SPJ4
Answer:
Approximately
, assuming that this gas is an ideal gas.
Explanation:
Look up the standard room temperature and pressure:
and
.
The question states that the volume of this gas is
.
Convert the unit of all three measures to standard units:
.
.
.
Look up the ideal gas constant in the corresponding units:
.
Let
denote the number of moles of this gas in that
. By the ideal gas law, if this gas is an ideal gas, then the following equation would hold:
.
Rearrange this equation and solve for
:
.
In other words, there is approximately
of this gas in that
.