Hey there!
Here is your answer:
<u><em>The proper answer to this question is option C "</em></u><span><u><em>0.00349".</em></u>
Reason:
</span><span><u><em>1 L = 100 cL. Or 1 cL = 0.01 L</em></u>
</span><span><u><em>34.9 cL = 34.9 / 100 L = 0.349 L</em></u>
</span><span><u><em> 1 hL = 100 L. 0.349 L = 0.349 / 100 hL = 0.00349 hL</em></u>
<em>Therefore the answer is option C!</em>
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit</span>
A change in an object's speed has a(n) _________ effect on its kinetic energy than a change in its mass = <span>A greater effect.</span>
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
Answer:

Explanation:
The speed of light in these mediums shall be lower than that in vacuum thus the total time light needs to cross both the media are calculated as under
Total time = Time taken through ice + Time taken through quartz
Time taken through ice = Thickness of ice / (speed of light in ice)


Thus in the same time the it would had covered a distance of
![Distance_{vaccum}=Totaltime\times V_{vaccum}\\\\Distance_{vaccum}=10^{-2}[2.20\mu _{ice+1.50\mu _{quartz}}]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3DTotaltime%5Ctimes%20V_%7Bvaccum%7D%5C%5C%5C%5CDistance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Cmu%20_%7Bice%2B1.50%5Cmu%20_%7Bquartz%7D%7D%5D)
we have

Applying values we have
![Distance_{vaccum}=10^{-2}[2.20\times 1.309+1.50\times 1.542]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Ctimes%201.309%2B1.50%5Ctimes%201.542%5D)

Answer:
(a) = -0.16%
(b) = smaller
Explanation:
given
power = 460 W
potential difference = 120 V
(a) what percentage will its heat output drop if the applied potential difference drops to 110 V ?
we know
.....................(i)
we need to find change in power
..............(ii)
from equations we get



(b)
if we increase temperature resistance will increase and decrease with decrease in temperature and we know power is inversely proportional to resistance so if potential decrease and it would cause drop in power
and due to this increment of heating power resistance will decrease so actual drop in the power would be smaller