It depends on the size, material, shape, etc.
Answer:
6.22 N/m
Explanation:
From Hooke's law we deduce that F=kx where F is the applied force and k is the spring constant while x is the extension or compression of the spring. Making k the subject of the above formula then

We also know that the force F is equal to mg where m is the mass of an object and g is acceleration due to gravity hence substituting F with mg we get that

Substituting m with 425 g which is equivalent to 0.425 kg and g with 9.81 then 0.67 for x we get that

Therefore, the spring constant is approximately 6.22 N/m
If it's in motion in the bottom it's called kinetic energy. Which means energy in motion
Answer:
Henri’s wave and Geri’s wave have the same amplitude and the same energy
Explanation:
The amplitude of a wave is the distance between the midpoint and the trough (or the crest). This is equivalent to half the distance between the trough and the crest. Therefore:
- amplitude of Henri's wave: 4 cm
- amplitude of Geri's wave: 8/2 = 4 cm
The energy of a wave is directly proportional to its amplitude.