Using sin(A+B) = sinAcosB + cosAsinB
sin20cos40 + cos20sin40 = sin(20+40) = sin60degree
=
Answer:
Part A : y²(x + 2)(x + 4)
Part B: (x + 4) (x + 4)
Part C: (x + 4) (x - 4)
Step-by-step explanation:
Part A: Factor x²y²+ 6xy²+ 8y²
x²y²+ 6xy²+ 8y²
y² is very common across the quadratic equation , hence
= y² (x² + 6x + 8)
= (y²) (x² + 6x + 8)
= (y²) (x² + 2x +4x + 8)
= (y²) (x² + 2x)+(4x + 8)
= (y²) (x(x + 2)+ 4(x + 2))
= y²(x+2)(x+4)
Part B: Factor x² + 8x + 16
x² + 8x + 16
= x² + 4x + 4x + 16
= (x² + 4x) + (4x + 16)
= x( x + 4) + 4(x + 4)
= (x + 4) (x + 4)
Part C: Factor x² − 16
= x² − 16
= x² + 0x − 16
= x² + 4x - 4x - 16
= (x² + 4x) - (4x - 16)
= x (x + 4) - 4(x + 4)
= (x + 4) (x - 4)
Answer:
D. -3/2 and 2
Step-by-step explanation:
Zeros are two points that touch the x axis.
The length would be 22 ft.
The width would be 7 ft.
A=lw
A=22(7)
A=154 ft^2
8x-5=19
+5 on each side
8x=24
Divide by 8 on each side.
X=3