1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
5

Cody’s car accelerates from 0m/s to 65 m/s northward in 25 seconds. What is the acceleration of the car?

Physics
1 answer:
Brut [27]3 years ago
6 0

Answer:

v=v(initial)+at

45=0+15a

a= 3m/sec²

Explanation:

edge 2020

You might be interested in
What new characteristics did john dalton add to the model of the atom
kicyunya [14]

Answer:

All atoms of an element are identical. The atoms of different elements vary in size and mass. Compounds are produced through different whole-number combinations of atoms. A chemical reaction results in the rearrangement of atoms in the reactant and product compounds.

HOPE THIS HELPED!!!!!!!!!!!!!!!!!!! XDDDDDDDDDDD

7 0
3 years ago
Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.
elena-s [515]

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

4 0
2 years ago
The total resistance of a parallel circuit is 25 ohms. If the total current is 100mA, how much current is through a 220 ohm resi
gulaghasi [49]

Answer:

The current across the resistance is 0.011 A.

Explanation:

Total resistance, R = 25 ohms

Total current, I = 100 mA = 0.1 A

Let the voltage is V.

By the Ohm's law

V = I R

V = 0.1 x 25 = 2.5 V

Now the resistance is R' = 220 ohm

As they are in parallel so the voltage is same. Let the current is I'.

V = I' x R'

2.5 = I' x 220

I' = 0.011 A

7 0
2 years ago
Two north poles will blank
soldier1979 [14.2K]

Answer:

Be pushed away from each other.

Explanation:

7 0
3 years ago
Question 23
bonufazy [111]

If the gymnast mass were doubled, her height (h) from the top of the board would be as follows,

с  Stay the same

Explanation:

  • The Mass of an object or body does not affect the acceleration due to gravity in any kind of way.
  • Light weight objects accelerate more slowly than the heavy objects because when the forces other than the gravity also plays a major role.
  • Mass increases of a body when an object has higher velocity or the speed.
  • The greater the force of gravity, it would give a direct impact on the object's acceleration; thus considering only a force, the heavier the object is, it would accelerate faster. But an acceleration depends upon the two factors which are  force and mass.
  • Newton's second law of motion states that the acceleration of an object is dependent upon the two factors which are, the net force of an object and the mass of the object.

3 0
3 years ago
Other questions:
  • What will change the velocity of a periodic wave?
    15·2 answers
  • How do stop watches measure to get the accurate measurement?
    14·1 answer
  • An air bubble has a volume of 1.70 cm³ when it is released by a submarine 115 m below the surface of a lake. What is the volume
    10·1 answer
  • Based on the law of conservation of energy, how can we reasonably improve a machine’s ability to do work?
    9·2 answers
  • a train travels 99 kilometers in 3 hours, and then 80 kilometers in 5 hours. What is it’s average speed?
    8·1 answer
  • F = 50 N<br> m = 72 kg<br> m/s2
    15·1 answer
  • The electrostatic attractions in crystalline salts, such as sodium chloride, are formed by __________ between positive and negat
    8·2 answers
  • Define position <br> i am not sure?
    13·1 answer
  • Describe the position of the sun, moon, and earth during a new moon and a full moon.
    8·1 answer
  • A 6 kg cart starting from rest rolls down a hill and at the bottom has a speed of 10 m/s. What is the height of the hill?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!