Answer:
The answer to your question is Decrease
<h2>You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy.</h2><h2>Hope it helps..</h2>
Answer:
70.6 mph
Explanation:
Car A mass= 1515 lb
Car B mass=1125 lb
Speed of car B is 46 miles/h
Distance before locking, d=19.5 ft
Coefficient of kinetic friction is 0.75
Initial momentum of car B=mv where m is mass and v is velocity in ft/s
46 mph*1.46667=67.4666668 ft/s
Initial momentum of car A is given by
where
is velocity of A
Taking East as positive and west as negative then the sum of initial momentum is
The common velocity is represented as
hence after collision, the final momentum is
From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence
The acceleration of two cars
From kinematic equation
hence
Substituting the value of
in equation
Answer:

Explanation:
For this problem, we need to apply the formulas of constant accelerated motion.
To obtain the boat displacement we need to calculate the displacement because of the river flow and the displacement done because of the boat motor.
for the river:

for the boat:

So the final displacement is given by:
