Answer:
Explanation:
D = 8.27 m ⇒ R = D / 2 = 8.27 m / 2 = 4.135 m
ω = 0.66 rev/sec = (0.66 rev/sec)*(2π rad/1 rev) = 4.1469 rad/s
We can apply the equation
Ff = W ⇒ μ*N = m*g <em>(I)</em>
then we have
N = Fc = m*ac = m*(ω²*R)
Returning to the equation <em>I</em>
<em />
μ*N = m*g ⇒ μ*m*ω²*R = m*g ⇒ μ = g / (ω²*R)
Finally
μ = (9.81 m/s²) / ((4.1469 rad/s)²*4.135 m) = 0.1379
Answer:
the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Explanation:
Given;
initial velocity of the airplane. u = 34.5 m/s
distance traveled by the airplane, s = 46,100 m
final velocity of the airplane, v = 40.7 m/s
The acceleration of the airplane is calculated from the following kinematic equation;
v² = u² + 2as

Therefore, the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Answer: 57.79%
Explanation: 152J/263J=.577946768 or 57.79% or roundedthe nearest whole percent is 58%
The energy stored in a capacitor is
E = (1/2) · (capacitance) · (voltage)²
E = (1/2) · (6 x 10⁻⁶ F) · (12 V)²
E = (3 x 10⁻⁶ F) · (144 V²)
<em>E = 4.32 x 10⁻⁴ Joule</em>
(That's 0.000432 of a Joule)