Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
Responder:
<h2>
0.7Hertz
</h2>
Explicación:
Usando la fórmula para calcular la velocidad de onda que se expresa como se muestra.
Velocidad de una onda = frecuencia * longitud de onda
v = fλ
Dada la velocidad de onda = 14 m / sy longitud de onda = 20 metros
frecuencia f = v / λ
f = 14/20
f = 0.7Hertz
La frecuencia de la onda es de 0.7 Hertz.
Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
Answer:
a = ω^2 A formula for max acceleration (ignoring sign)
V = ω A formula for max velocity
V^2 = ω^2 A^2 = a A from first equation
E = 1/2 M V^2 = 1/2 * 2.98 * 3.55 * .0805 = .426 J
(kg * m/sec^2 * m = kg m^2 / sec^2 = Joule