If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
Answer:
How to Test Hypotheses
State the hypotheses. Every hypothesis test requires the analyst to state a null hypothesis and an alternative hypothesis. ...
Formulate an analysis plan. The analysis plan describes how to use sample data to accept or reject the null hypothesis. ...
Analyze sample data. ...
Interpret the results.
The circuit component the symbol represents is: C) Battery
An LDR's resistance changes with light intensity, while a thermistor's resistancce changes with temperature.
In dark, LDR's resistance is large and in the day/light LDR's resistance is small.
At low temperature, thermistor's resistance is large, while at large temperature it resistance is small.
In an LDR Resistance increases as light intensity falls, while in a thermistor resistance falls as temperature falls.