The answer is C I got it right so hope it helped ;)
Answer: hello your question is incomplete below is the complete question
Salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (Cl−) per cubic meter. A battery is connected to metal rods that dip into a narrow pipe full of salt water. The cross sectional area of the pipe is A. The magnitude of the drift velocity of the sodium ions is VNa and the magnitude of the drift velocity of the chloride ions is VCl.
What is the magnitude of the ammeter reading ?
answer :
| I | = neAVₙₐ + neAV (Cl-)
Explanation:
Given that there are N sodium ions
<u>Determine the Magnitude of the ammeter reading </u>
| I | = current due to sodium ions + current due to (Cl-) ions
= neAVₙₐ + neAV (Cl-)
Answer:
Partial pressure of CO₂ is 406.9 mmHg
Explanation:
To solve the question we should apply the concept of the mole fraction.
Mole fraction = Moles of gas / Total moles
We have the total moles of the mixture, if we have the moles for each gas inside. (3.63 moles of O₂, 1.49 moles of N₂ and 4.49 moles of CO₂)
Total moles = 3.63 mol O₂ + 1.49 mol N₂ + 4.49 mol CO₂ = 9.61 moles
To determiine the partial pressure of CO₂ we apply
Mole fraction of CO₂ → mol of CO₂ / Total moles = P. pressure CO₂ / Total P
Partial pressure of CO₂ = (mol of CO₂ / Total moles) . Total pressure
We replace values: (4.49 moles / 9.61 moles) . 871 mmHg = 406.9 mmHg
In order to balance this equation you need to count each element and how many of the individual elements are in the equation.
_H2+N2=2 NH3
You multiply the 2 (Which is the coefficient) by the 3 (which is the subscript) This would equal 6 which indicated there are 6 hydrogen atoms on the right side so the left side should also have 6 hydrogen atoms
The missing coefficient on the left side must multiple the 2 to become 6 hydrogen
Answer=3